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190 A HISTORY OF MATHEMATICS NEWTON TO EULER s
- Germany still contin wed in a state of national degradation. Th
Thirty Years' War had dismembered the empire and brutalized the
te. Yet this darkest period of Germany’s history produced G. W,
niz, one of the greatest geniuses o modern times.

toward which the lines of
" hast Progress Converge, and from which radiate the advances of the

by E. T 113 ] '3 ‘ .
J orticelli, Gregory St. Vincent, P. Fermat, G. P. Roberval an “future, Such was the age of Newton and Leibniz in the history of

Wallis in 1685, and Edmund Halley in 1698." James Gresory 4
es Gregory an

Barrow gave also the in J“' n =)
8 ntegral ’te...ﬂ d @=log sec 8; B. Cavalier; in

- There are certain focal points in history

1647 established thei . imi '
47 established the integral offax“d.r. Similar results were obtaineg

B. Pascal.* L : ey : f
~mathematics. During ity years preceding this era several of the

‘brightest and acutest mat sematicians bent the force of their genius

led to the discovery of the infinitezimal

Newon lo Esler in a direction which finally
~alculus by Newton and Leibniz. B. Cavalied, G. P. Roberval, P.

It has been seen that i i3 .
s n s hat in France prodigious scientific progress s : i
prodig ntific progress was Fermat, R. Descartes, J. Wallis, and others had each contributed to

made during the beginning and mi

The toleration whi Cf ma;‘xge d I:(liel;::‘iigrlleo?fl;zl: “}"clm“;? century. the new geometry. So greal was the advance made, and 50 near was
S e b t"} 5 and Louis X111 \hele approach toward the invention of the infinitesimal analysis, that
fidence came to be placed in the power of th;. llw);;mr‘lx:fmédx?ry botd both J. Lagrange and . & L P e The difre o xfek
ot bl et o iy 4 i an.de o h"c lt.:.:] P. Fermat, to be the first inventor of it. The differential calculus,
et ot e s ANty .‘:\a en- thercfore, was not g0 much an individual discovery as the grand result
p‘:lrt' s veign of Louis X0¥ e behoid the s u:.w't ;gl:ﬁgd (t).vc- :::':.rl__v of a succession of discoveries by difierent minds. Indeed, no great
glorious period. Then followed a night of mental effeminacy D discovery ever flashed upon the mind at once, and though those o
Jack of great scientific thinkers during the reign of Iccds\,::ll{)«xxl !lm Newton will influence mankind to the end of the world, yet it must be

§ L AOWS ALV may be admitted that Pope’s lines are only a ** pactic fancy "—

due to the simple fact that no great minds were born; but, according
to Buckle, it was due to tl rnali spirit ' ea
o ld: us di he paternalism, to the spivit of dependence
i subordination, and to the lack of toleration, which marked z-‘-c

1

“Nature and Nature's laws lay hid in night;
God said, ‘Let Newton be,' and all was light."

policy of Louis XIV.
hi;r;c;z!lﬂvabsgnc? of \{l;iﬁl French thinkers, Louis XIV surrounded :Isaac Ngw}on' [’(".‘f' :.'{‘?7\' gt bm'",::‘_’_t w"“"f'f'.h:ﬂ"" in ﬁLi:.lco!n-
)y eminent foreigners. O. Rémer from Denmark, C. Huygen shire, the same year in which Galileo died. At his birth he was %0
from Holland, Dominic Cassini from Italy, were m‘; math rriit et emall and weak that his life was despaired of. His mother sent him
3"-_l,]_.itﬂr€‘n0mcrs adorning his court. 'n':,;.f). \w:crc in ";)“f;;‘i;j"c‘“.‘"f at an early age toa village school, and in his twelith year to the public
Prh.un reputation before going to Paris. Simply be?'u;;e_[‘- o school at Grantham. At first he seems to have been very inattentive
formed scientific work in Paris, that work belongs no n re t 'i},[ o5 10 his studies and very low in the school; but when, one day, the little
than the discoveries of R. Descartes belong lotilollar‘c(l)'z-(i' L Isaac received a severe kick upon his stemach from a boy who was
J. Lagrange to Germany, or those of L. Euler and J V. Pon ""!' 2 above him, he Jabored hard till ke ranked higher s school than his
R'::ss:a.; We must look to other countries than F}a*'cc }or\{‘;u.l-.‘ﬁ'.‘ antagonist. From that time he contihued to rise until he was the
scientific men of the latter part of the seventeenth century Ae great head boy.] At Grantham, Isaac showed a decided taste for mechan-
About the time when Youis XIV assuimed the directs : ical inventions. He constructed a water-clock,a wind-mill, & carriage
French government Charles II became king of En '.‘anﬂmn ';0 - this moved by the person who sat in it, and other toys. When he had at-
time England was extending her sihiesea aof x‘nvigulc. ALES f‘}“ tained bis fifteenth year his mother took him home to assist her in
vancing considerably in material prosperity A.strg; _n,‘ a]p<' "ri the management of the farm, but his great dislike for farmwork and
movement took place, which was unvriningl'): Su-pponc‘dgbl.r.:!:\ cclu: his irresistible passion for study, induced her to send him back to
The age of poetry was soon followed by an age of science g i.L‘ T Grantham. where he remained till his eighteenth year, when he en-
ophy. In two successive centuries England produced Shnﬁ. b :",_f, tered Trinity College, Cambridge (1660). Cambridge was the real
and I. Newton! - e s birthplace of Newton's genius, Some idea of his strong intuitive
that he regarded the theorems of

powers may be drawn from the fact

t See F. Cajori in Bibliotheca matbematica, 3, S, Vi 3 a G 1
tH. G Zeuthen. Ge P Hica, 3. . ol, 14, 1085, Pp. 313-313. ancien geomelry as sclf-C':xlcn! tru
pp. 356 8. on, Gesckichie der Moth, (deutsch v. R, Meyez), Lelpslg, 1923, liminary study, he made himseli master of Descarte

11, Brewster, The Meweirs of Newlos, Edinburgh, Vel.

ths, and that, without any pre-
3' Geomelry. He
I, 853, 0. 8,
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ajterwards regarded this neglect of elementary geometry a mistake
in his mathematical studies, and he expressed to Dr, H. Pemberton
his regret that “he had applied himself to the works of Descartes and
other algebraic writers .‘;-c}orc he had considered the Elements of Euclid
with that attention which s¢ excellent a writer deserves.” Besides R,
Descartes’ Geometry, he studied W, Oughtred's Clavis, ]. Kepler's
Optics, the works of F. Vieta, van Schooten’s Miscelianies, . Barrow's
eciures, and the works of J, Wallis, He was particy irly delighted
with Wallis' Arithmetic of Tufinites, a treatise fraught with rich and
varied suggestions, Newton had the good fortune of having for a
teacher and fast friend the celebrated Dr. Barrow, who had been
elected professor of Greek in 1660, and was made Lucasian profezsor
of mathematics in 1663. The mathematics of Barrow and of Wallis
were the starting-points from which Newton, with a higher power
than his masters’, moved onward into wider fields. Wallis had ei-
fected the quadrature of curves whose ordinates are expressed by an
integral and positive power of (1—x%). We have seen how Wallis
attempted but failed to interpolate between the areas thus caleulated,
the areas of other curves, such as that of the circle; how Newton at-

J tacked the problem, effected the interpolation, and discovered the

Binomial Theorem, which afforded a much easier and direct accest Lo

the quadrature of curves than did the method of interpolation; for

even though the binomial expression for the ondinate be raized to a

fractional or negative power, the binomial could at once be expanded

into a series, and the quadrature of each separate term of that series
could be effected by the method of Wallis. Newton introduced the
system of literal indices.

Newton's study of quadratures soon led him to another and most
profound invention. He himself says that in 1663 and 1666 he con-
ceived the methad of fluxions and applied them to the quadrature of
curves. Newton did not communicate the invention to any of his
friends till 1660, when he placed in the hands of Barrow tract, en-
titled De Analysi per Eguationes Numero Terminorum [ wfinitas, which
wis sent by Barrow to John Colling, who greatly admived it, In
this treatize the Srincip!c of fluxions, though distinctly pointed out,
is only partially developed and explained, Supposing the abscissa to
increaze uniformly in proportion to the time, he looked upon the area
of & curve as a nascent quantity increasing by continued fluxion in
the proportion of the length of the ordinate. The expression which
was obtained for the fluxion he expanded into a finite or infinite series
of monomial terms, to which Wallis’ rule was applicable. Barrow
urged Newton to publish this treatise; “but the modesty of the author,
of which the excess, if not culpable, was certainly in the present in-
stance very unfortunate, prevented his compliance.” * Had this tract

! Jobn Playfalr, **Progress of the Mathematical and Physical Sciences” in En-
cyclopadin Britannica, 3th Edithon.
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{ rears Jater, there prebably
ished then, instead of forty-two years iater, th ;
been published then, instead of fort) Rt B b g o
would have been no occasion for that long and deplor
between Newton and Leibniz. 1

For a long time Newton's me 3
friends and their correspondents, In a letter

hod remained unknown, except to hit
to Collins, datcrll De-
fact of his invention with one
cember ‘lolh 1672, Newton states the fact 0.'1,.3 m.cr:;ll:r C;:“”aw
o ] ‘ s 3 ~ - . 0 2
example, and then says: “This is gne_ m‘r:u.. 4'.11}1,) uo(r :;y x colE:
! sethod. which extends itself, without les
f a general methed, v X , without any troublescers
?\l(uﬁtion. net only to the drawing of tangents Eo a-?i:" \lr"rl-
“"’*ctHcr geometrical or mechanical, or anyh-u.-.h xu}:lﬁ: -":fc-.b
= ather curves. but also to the resolving other abstruser kiads of
or other curves, but :'...s'o to the C,: ],?.4‘5 centres of gravity of
problems about the cm-tn.\'cﬁnc":!s..ﬂru.:sl.l.‘;.(xl.yi.:.. ,‘a;;;v:\ ol vl
urves, ete.; is it (as Hudde's method of Aiaximis i
curves, ete.l nor 18 1t (g

. Sl "
g . v { wvd auantities. This nethed
limited to equations which are free [rom surd quantities T S

} b3 1w ovinats by 1“ in
I have interwoven with that other of working in equations, by rc g
hem to infinite series.” ) i
: ":I!‘]l-.esc‘last words relate toa tll'c.a;'..a]c he ;(u;(}gffﬁr'; cllll.l ’:'i?mclh‘ﬂl'i
titl 1od of Flxions, in which he atm represent his meta
e:‘-.l[.:d .‘[[.';.L.u ay s s vt e o iab
as an independent calevlus and asa ccuvrgj‘ze b}\ xsnf:—l?h uvl;‘» Ens’s i
intended as an introduction to an edition of AIRCKAUISE tnvelsal
]whccnv? he had undertaken to publish. “But J;.c t<-4ukolf l\i?;:gti ‘u‘inl\érr
in ;]i.«];utcs about this new discovery, or perhaps t..a.’ R
it more complete, or to have the sole a«.l'.'nm:ng:.u.dcmg ving
- L ) LA A ) . Sy ‘.: 1nl /
shysical researches, inducad him to aba..\lc_vn‘t..'xi }\;wl.? AT
pi j:-‘-u'cpting two papers on optics, all of ]:'Sw:.':?:.r 5 :\s]: el i
been published only after the most pressing 50(;;:?“' w;rt: severely
inst his own wishes. His researches on ght were $VErS)
an:(’l. ag:ﬁr.sltnj he wrote in 1675: “1 was 5o persecuted .uth'(.L_gusds:?g:
sty oat ol theoty of light that I blamed my own baprud
e S ox't}my abitantial a blessing as my quiet to runafter a
for parting with so substan lessis
ghadow.” . ; ; ; .
The Method of Fluxion:, translated by ].. f(“?lsi’gagczjftz et
Latin, was first published in 1736, or sixty-ive ¥ s wter B
written, In it he explains first the expansion ‘n:l.o..wi tea of Joac e
and irrational quantities,—a subject which, in his u:.ds )to i ol stEh
received the most careful attention, He Lhc‘n_ proces s oare,
of the two following mechanical problems, which consti
ak, of the abstract calculus:— ! (s R
Eo"‘ﬁ g Jength of the space described being continually @@
ol o ; ity of the motion at any time pro-
all times) given; to find the velocity of the mot
S . - . a v : 3 . nd
pc-z‘i\'}- The velocity of the motion being co:mm.:tl.l)d given; to fi
the ]c:\gth of the space describcg( at any l;:\{: px:lgl,;;;e Ll L
- olution, Newlon says: s, } Lt
Preparatory to the solution, T ) gt e
yuix? p;f y represents the length of the space gt :u}} time
5 L D, Brewster, 02, cit, Vol. 2, 1835, p. 15.
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which (time] another space », by increasing with an uniform celerity
%, measures and exhibits as described: then 2xx will represent the
celerity by which the space v, at the same moment of time, proceeds
ta be described; and contrarywise.”

‘*But whereas we need net consider the time here, any farther than
it is expounded and measured by an equable local motion; and he.
sides, whereas only quantities of the same kind can be compared to-
gether, and also their velocities of increase and decrease; therefore, in
what follows 1 shall have no regard to time formally considered, but
I shall suppose some one of the quantities proposed, being of the same
kind, to be increased by an equable fluxion, to which the rest may be
referred, a3 it were to time; and, therefore, by way of analogy, it
may not improperly receive the name of time.” In this statement of
Newton there (s contained his anewer to the objection which has been
raised against his methed, that it introduces into analysis the foreign
idea of motion. A guantity thus increasing by uniform fuxion, is
what we now call an independent variable,

Newton continues: “Now those quantities which I consider as
gradually and indefinitely increasing, I shall hereafter call fuents, or
fowing quantities, and shall represent them by the final letters of the
alphabet, o, #, y, and 57 , . . and the velocities by which every fluent
is increazed by its generating motion {which I may call furions, or
simply velocities, or celerities), I shall represent by the same letters

pointed, thus, ¢, #, ¥, 3, That is, for the celerity of the quantity v
I shall put 5, and =o for the celerities of the other quantities ¥, v, and
%, I shall put x, ¥, and 2, respectively.” It must here be observed that
Newton does not take the fluxions themselves infinitely small. The
“moments of fuxions,” a term introduced further on, are infinitely
small quantities, These “moments,” as defined and used in the
Method of Fluxions, are substantially the differentials of Leibniz, De
Morgan points out that no small amount of confusion has arizen from
the use of the word fuxion and the notation x by sll the English writers
previous to 1704, excepting Newton and George Cheyne, in the sense
of an infinitely small increment.! Strange to say, even in the Com-
mercium episiolicim the words moment and fuxion appear to be used
48 SYNonymous,

After showing by examples how to solve the first problem, Newton
proceeds to the demonstration of his solution:—

“The moments of flowing quantities (that is, their indefinitely
small parts, by the accession of which, in infinitely small portions of
time, they are continually increased) are as the velocities of their
flowing or increasing.

“Wherefore, if the moment of any one (as x} be represented by the
product of its celerity & into an infinitely small quantity o (i, & by

‘A, De Morzan, "On the Early History of Infinitesimals,” in Philsrsphical
Muagasine, November, 1352,
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#c), the moments of the others, o, ¥, z, will be represented by vo, yo,
20; bacause 20, xc, 30, and o are to each otheras v, x, y,and .
“Now since the moments, as %o and yo, are the indefinitely little
accessions of the flowing quantities x and v, by which those quantitics
are increased through the several indeqnitely little m:cr:::s]s of time,
it follows that those guantitics, x and y, after any indefinitely small
interval of time, become x40 and y+3o, and therefore the equation,
which at all times indifferently exprestes the relation of the Howing
quantities, will as well express the relation between x-+3o and y+jo,
as betwesn » and y; 50 that x+4o0 and y+%o may be substituted in
the same equation for those quantities, instead of x and y. Thus let
any eguation x¥= gx’+axy—y3=o be given, and substitute x+xo for
#,and y+yo for y, and there will arice
234 30% %0 f3nieio+ris?
— g — 3qxX0 — axoro
+aXY=aYEO  HBXOVC =0,
+axyo
—y* —=3y'yo —3yyoyo—yo’
“Now, by supposition, 23 —ax*+axy = y*=o, which therefors, bein

expunged and the remaining terms being divided by o, there wi

remain

3600 — 20Xt ayiFauy = 3 Y- 300 — AXXOHIEN0 — IO

+i#iz0—yioe=o.
But whereas zero is supposed to be infinitely little, that it may repre-
gent the moments of quantities, the terms that are multiplied by it
will be nothing in respect of the rvest (fermind in cam ducti pro nikilo
passunt haberi cum aliis collati); therefore I reject them, and there
remains
3% —2axt4-ayx-+axy—3yy=o,

as above in Example I.” Newton here uses infinitesimals,

Much greater than in the first problem were the difficulties en-
countered in the solution of the second preblem, involving, asit does,
inverse operations which have been taxing the skill of the best ana-
lysts since histime. Newton gives first a special solution to the second
problem in which he rezorts to a rule for which he has given no proof,

In the general sclution of his second problem, Newton assurmed
homogeneity with respect to the fluxions and then considered three
cases: (1) when the equation contains two fluxions of quantities and
but one of the fluents; {2) when the equation involves both_thc fluents
as well as both the fluxions; (3) when the cquation contains the flu-
ents and the Buxions of three or more quantities, The first case is the

f . dy 2
easiest since it requires simply the integration of oo «f(x), to which
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his “special solution” is applicable. The second case demanded
nothing less than the general solution of a differential equation of the
first order. Those who know what efforts were afterwards needed
for the complete exploration of this field in analysis, will not depre-
ciate Newton's work even though he resorted to solutions in form of
infinite series. Newton's third case comes now under the sclution of
partial differential equations. He 100k the eguation 2f—24xy=o
and succeeded in inding 2 particular integral of it.

The rest of the treatise is devoted to the determination of maxima
and minima, the radius of curvature of curves, and other geometrical
applications of his fuxionary calculus. All thiz was done previous
to the year 167z,

It must be cbserved that in the Melhod of Fluxions (as well as in
his De Awelvsi and all earlier papers) the method employed by New-
ton is strictly infinitesimal, and in substance like that of Leibniz.
Thus, the original conception of the calculus in England, as well as
on the Continent, was based on infinitesimals. The fundamental
principles of the fiuxionary calculus were first given to the world in
the Principic; but its peculiar notation did not appear until published
in the second volume of Wallis' Algebrs in 1693, The exposition
given in the Algedrs was a contribution of Newton; it rests cn in-
finitesimals, In the first edition of the Principia (1685) the descrip-
tion of fluxions is likewise founded on infinitesimals, but in the second
(1713} the foundation is somewhat altered. In Book II, Lemma II,
of the first edition we read: “Cave tamen intellexeris particulas
fivitas.  Momenia guame primum fnile sunt magnitudinis, desinunt
esse moments.  Finiri enim repugnat aliguatenus perpelue corim
ncremento vel decremento, Intelligenda sunt principia jamjam nas-
centia finitarum magnitudinum,” In the second edition the two
sentences which we print in italics are replaced by the following:
“Particule finitee non sunt momenta ged quantitates ipse ex mo-
mentis genite." Through the difficulty of the phrazes in both ex-
tracts, this much distinctly appears, that in the first, moments are
infinitely small quantities. What else they are in the second is not
clear.’ In the Quadreture of Curves of 1704, the infinitely small
quantity is completely abandoned. It has been shown that in the
Method of Flwxions Newton rejected terms involving the quantity o,
because they are infinitely small compared with other terms. This
reasoning i3 unsatisfactory; for as long as o is a quantity, though
ever so small, this rejection cannct be made without affecting the
result, Newton seems to have felt this, for in the Quadrature of Curves
he remarked that “in mathematics the minutest ervors are not to be
neglected™ (errores quam minimi in rebus mathematicis non sunt
contemnendi).
~The early distinction between the system of Newton and Leibniz

YA, De Motgan, fec. cit., 1852,
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lies in this, that Newton, holding to the conception of velocity or,
fduxion, used the infinitely small increment as 4 means of determining.
it, while with Leibniz the relation of the infinitely small increments
iz itself the object of determination. The difference befween the two
rests mainly upon a difference in the mode of generating quantities, !

We give .{icwlon's statement of the method of fluxions or rates, as {
given in the introduction to his Quadrature of Curves. “T consider |
mathematical gquantities in this place not as consicting of very small
parts, but as described by a continued motion. Lines are described,
and thereby generated, not by the apposition of parts, but by the
continued moticn of points; superficies by the motion of lines; solids
by the motion of superficies; angles by the rotation of the sides;
portions of time by ¢ontinual flux: and so on in other quantities,
These geneses really take place in the nature of things, and are daily |
seen in the motion of bodies. . . .

“Fluxions are, as near as we please (guam proxime), as the incre-
ments of fuents generated in times, equal and as small as possible,
and to speak accurately, they are in the prime ratio of nascent in-
crements; vet they can be expressed by any lines whatever, which are
proportional to them.”

Newton exemplifies this last assertion by the preblem of tangency:
Let AB be the abacissa, BC the ordinate, VCH the tangent, Ec the
increment of the ordinate, which produced meets VA at T, and Ce
the increment of the curve, The right line C¢ being produced to K,
there are formed three small triangles, the rectilinear CEr, the mix-
tilinear CEe, and the rectilinear CET, Qf these, the first is evidently
the smallest, and the last the greatest, { Now suppose the ordinate b¢
to move into the place BC, so that the point ¢ exactly coincides with
the point C; CK, and

therefore the curve Ce SH
is coincident with the tan- : / g
gent CH, Ec is abzclutely _g/“x

equal to ET, and the .
mixtilinear evanezcent tri-
angle CEr is, in the last
form, similar to the tri-
angle CET; and its eva-
nescent sides CE, Fe, Cs,
will be proportional to
CE, ET, and CT, the ¥V A B b

sides of the triangle CET.

Hence it follows that the fuxions of the lines AB, BC, AC, being in
the la:t ratio of their evanescent increments, are proportional to the
sides f the tdangle CET, or, which is all one, of the triangle VBC
similar thereunto, As long as the peints C and ¢ are distant from
each other by an interval, however small, the line CX will stand
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apart by a small angle from the tangent CH. But when CX co.
incides with CH, and the lines CE, Ee, ¢C reach their ultimate
ratios, then the points C and ¢ accurately coincide and are one
and the same, Newton then adds that “in mathematics the
minutest errors are not to be neglected.”” This is plainly a re-
jection of the postulates of Leibniz. The doctrine of infinitely
small guantities is here renounced in a manner which would lead
one to suppose that Newton had never held it himself. Thus it
appears that Newton's doctrine was different in different perioda,
Though, in the above reasoning, the Charybdis of infinitesimals is
safely avoided, the dangers of a Scylla stare us in the face. We are
required to believe that a point may be considered a triangle, or that
a trangle can be inzcribed in a point; nay, that three dissimilar tri-
angles become similar and equal when they have reached their ulti-
mate form in one and the same point,

In the introduction to the Quadralure of Curves the duxion of x®
is determined as follows:i—

“In the same time that x, by flowing, becomes x+o, the power
a® becomes (w-+o)¥, 7, &. by the method of infnite series

o
Nn"—n o
V= RoxY " i ‘T-‘O‘.t”' el

and the increments

3
TR .
oand no.v"'v—z——o’.v"‘ et

are to one another as
L #—n
1 towx*T 14 —;—ox“' ipete.

“Let now the increments vanish, and thelr last proportion will be
t to nx*~ L hence the fluxion of the quantity x is to the fluxion of the
quantity x* as 1 sx""7,

“The fuxion of lines, straight or curved, in all cases whatever, as
also the fluxions of superficies, angles, and other quantities, can be
obtained in the same manner by the method of prime and ultimate
ratios. But to establish in this way the analysis of infinite quantitics,
and to investigate prime and ultimate ratios of finite quantities, nas-
cent or evanescent, is in harmony with the geometry of the ancients;
and I have endeavored to show that, in the method of fluxions, it is
not necessary to introduce into geometry infinitely small quantities.”
This mode of differentiating does not rémove all the difficulties cen-
nected with the subject. When o becomes nothing, then we get the

o . . Sl
ratio s-m"", which needs further elucidation. Indecd, the riethed

of Newton, as delivered by himself, {s encumbered with diff culties
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and objections. Tater we shall state Bishep Berkeley's objection to
this reasoning. Fven among the ablest admirers of Newton, there
have been obstinate disputes respecting his explanation of his method
of “prime and ultimate ratios.'”

The so-called “method of limits" is frequently attributed to New-
tor:, but the pure method of limits was never adopted by him as his
method of constructing the calculus, All he did was to establish in
kis Principia certain principles which are applicable to that method,
but which he used for a different purpose. The first lemma of the
firzt book has been made the foundation of the method of limits:—

“Quantities and the ratios of quantities, which in any finite time
converge continually to equality, and before the end of that time ap-
preach nearer the one to the other than by any given difference, be-
come ultimately equal.’,

In this, as well as in the lemmas following this, there are obicurities
and dificulties. Newton appears to teach that a variable quantity
and its limit will ultimately coincide and be equal,

The full title of Newton's Principia is Philosophie Naluralis Prin-
cipic Matkematice, It was printed in 1687 under the direction, and
at the expense, of Edmund Halley, A second edition was brought
out in r7r3 with many slterations and improvements, and accom-
panied by a preface from Roger Cotes. It was sold out in a few
months, but a pirated edition published in Amsterdam supplied the
demand. The third and last edition which appeared in England during
Newton's lifetime was published in 1726 by Henry Pemberton, The
Principie consists of three books, of which the first two, constituting
the great bulk of the work, treat of the mathematical principles of
natural philosephy, namely, the laws and conditions of motions and
forces. In the third book i5 drawn up the constitution of the universe
es deduced from the foremoing principles. The great principle under-
lying this memorable work is that of universal gravitation, The
book was completed on April 28, 1686, After the remarkably short
perfod of three months, the second book was finished. The third book
is the result of the next nine or ten months' labors, It is only a sketch
of & much more extended claboration of the subject which he had
planned, but which was never brought to completion,

The law of gravitation is enunciated in the first book, Its discovery
envelops the name of Newton in & halo of perpetual glory. The cur-
rent version of the discovery is as follows: it was conjectured by
Rebert Hooke (1635-1703), C? Huygens, E. Halley, C. Wren, I, New-
ton, and others, that, if J. Kepler's third law was true (its absolute
accuracy was doubted at that time), then the attraction between the
carth and other members of the zolar system varied inversely ns the
square of the distance. But the proof of the truth or fakity of the
guess was wanting. In 1666 Newton reasoned, in substance, that if
¢ represent the acceleration of gravity on the surface of the carth, r
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be the earth’s radius, R the distance of the moon from the earth, T
the time of lunar revolution, and @ a degree at the equator, then, if
the law is true,
R 47(R)
gR—,-.ur'i.-,. or g-F:f\-'—} . 18¢ca,
‘The data at Newton's command gave R=6c.4r, T~ 2,300,628 seconds,
but ¢ only Go instead of 6g} English miles, This wrong velue of ¢
rendered the calculated value of g smaller than its true value, a3
known from actual measurement. It looked as though the law of
inverse squares were not the true Jaw, and Newton laid the calculation
aside. In 1684 he casually ascertained at a meeting of the Royal
Society that Jean Picard had measured an arc of the meridian, and
obtained a morE accurdte value for the carth’s radius, Taking the
corrected value for a, he found a figure for ¢ which corresponded to
the known value, Thus the law of inverse squares was verified. Ina
echolium in the Principia, Newton acknowledged his indebtedness to
Huygens for the laws on centrifugal force employed in his calculation,
The perusal by the astronomer Adams of a great mass of unpub-
lished letters and manuscripts of Newton forming the Portzmouth
collection {which remained private property until 1872, when its
owner placed it in the bandz of the University of Cambridge) seems to
indicate that the difficulties encountered by Newton in the above
calculation were of a different nature. According to Adams, Newten's
numerical verification was fairly complete in 1656, but Newton had
not been able to determine what the attraction of a spherical shell
upon an external point would be. His letters to E. Halley show
that he did not suppose the earth to attract as though all its mass
were concentrated inte a point at the centre, He could not have
asserted, therefore, that the assumed law of gravity was verified by
the figures, though for long distances he might have climed that it
yielded close approximations. When Halley vizited Newton in 168y,
he requested Newton to determine what the orbit of a planet would
be if the Jaw of attraction were that of inverse squares. Newton had
solved a similar problem for R. Hooke in 1679, and replied at once
that it was an ellipse, After Halley’s visit, Newton, with Picard's
new value for the earth's radius, reviewed his early caleulation, and
was able to show that if the distances between the bodies in the solar
syatem wete o great that the bodies might be considered as points,
then their motions were in accordance with the assumed law of gravi-
tation. In 1685 he completed his discovery by showing that 2 sphere
whote density at any point depends only on the distance from the
centre attracts an external point as though its whele mass were con-
centrated at the centre,
Newton's unpublished manuscripts in the Portsmouth collection
show that he had worked out, by means of fluxions and fluents, his
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lunar caleulations to o higher degree of approximation than that given
in the Principia, but that he was unable to interprel his results geo-
metrically. The papers in that collection throw light upon the mode
hv which Newten arrived at some of the results in the Principia, as,
for instance, the famous solution in Beok IT, Prop. 33, Scholium, of
the problem of the solid of revelution which moves through a resisting
medium with the least resistance. The solution iz unproved in the
¢ but is demonstrated by Newton in the draft of a letter to
David Gregory of Oxford, found in the Portsmouth Cl.)..lc’(t.il).'l.‘

It is chiefly upon the Princigia that the fame of Newton rests.
David Brewster calls it “the brightest page in the records of human
n." Let us Nsten, for & moment, to the comments of P. S, La-

reaso
place, the foremost ameng those followess of Newton who grappled
with the subtle problems of the moticns of planets under the nfuence
of gravitation: “* Newton has well established the existence of the

rinciple which he had the merit of dizcovering, but the development
of its consequences and advantages has been the work of the successors
of this great mathematician. The imperfection of the infinitesimal
calculus, when first discovered, did not allow him completely to re-
solve the difficult problems which the theory of the universe offers;
and he was oitentimes forced to give mere hints, which were always
uscertain till confirmed by rigorous analysis. Notwithstanding these
unavoidable defects, the importance and the generality of his dis-
coveries respecting the system of the universe, and the most interesting
points of natural philosaphy, the great number of profound and orig-
inal views, which have been the origin of the most brilliant discoveries
of the mathematicians of the last century, which were all presented
with much elegance, willinsure to the Principis a lasting pre-eminence
over all other productions of the human mind."” 5

Newton's Arithmetica universalis, consisting of algebraical lectures
delivered by him during the first nine years he was professor at Cam-
bridge, were published in 1707, or more than thirty years aiter they
were written. This work was published by Wn‘.lm_m Whisten ‘(t66’}-
1752). We are not accurately informed how \\_'hxa'.on came in pos-
sesgion of it, but according to some authorities its ul':‘.lcatwn_was a
breach of confidence on his part. He succeeded Newton in the
Lucasian professorship at Cambridge. ;

The Arithmetica universalis contains new and important results on
the theory of equations. Newton states Descartes’ rule of signs in
accurate form and gives formule expressing the sum of g!zc powers
of the roots up to the sixth power and by an “and so on’ maxes it
evident that they can be extended to any higher power. Newton's
formule take the implicit form, while similar formule given earlier

10, Bolzs, in Biblistheca matbematica, 3. 8., Vol. 13, 1513, ppr 144~149. For
a bibliography cf this “problem of Newton™ ca the surface of leasl reslstance, wee
L'lwiermeilaire des matidmaticiens, Val. 13, 1916, pp. 8284,
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by Albert Girard take the explicit form, as do also the gcncral formula
derived later by E, Waring. Newton uses his formule for fixing an
upper limit of real rgots; the sum of any even power of all the roots
muzt exceed the same even power of any one of the roots, He estab-
lished also another limit: A number is an upper limit, if, when sub-
stituted for x, it gives to f(x) and to all its derivatives the same sign.
In 1748 Colin Maclaurin proved that an upper limit is obtained by
adding unity to the absolute value of the largest negative coefficient
of the equation, Newton showed that in equations with real co-
efficients, imaginary rcots always occur in pairs, His inventive genius
is grandly dizplaved in his rule for determining the inferior imit of the
number of imaginary roots, and the superior limits for the number
of positive and negative roots, Though less expeditious than Des-
cartes’, Newton’s rule always gives as close, and generally closzer,
limits to the number of positive and negative roots, Newton did
not prove his rule.

Some light was thrown upon it by George Campbell and Colin
Maclaurin, in the Philosophical Transactions, of the years 1728 and
1729. But no complete demonstration was found for a century and a
half, until, at Jast, Sylvester established a remarkable general theorem
which includes Newton's rule as a special case. Not without interest
is Newton's suggestion that the conchoid be admitted as a curve to
be used in geometric constructions, along with the straight line and
circle, since the conchoid can be used for the duplication of a cube and
trisection of an angle—to one o the other of which every preblem
involving curves of the third or fourth degree can be reduced,

The treatise on Methsd of Fluxions contains Newton's method of
approximating to the roots of numerical equations. Substantially
the same explanation is given in his De amalysé per @quationes numers
termingrum infinitas. He explaing it by working one example, namely
the now famous cubic ! y*—2y—g5=o0. The earliest printed account
appeared in Wallis' Algebra, 1685, chapter g4, Newton assumes that
an approximate value is already known, which differs from the true
value by less than one-tenth of that value. He takes y=2 and sub-
stitutes y=2+p in the equation, which becomes p*+-6p+10p— 1 =0,
.\’cglectini the higher powers of p, he gets 1op—r1=o, Taking
f-.t+q, e gets ¢*4+-63¢*f11.23¢+.c61=0. From 11.230+.061=0
e gets 9= —.co54+r, and by the same process, r= —.00004853.
Finally y=2+4.1~.0034 - .00004853=2.00455147. Newton arranges
his work in a paradigm. He seems quite aware that his method may
fail. If there is doubt, he says, whether p=.1 is sufficlently close to
the truth, find p from 6p*+10p~1=0c. He does not show that even
this latter method will always answer. By the same mode of pro-

! For quotations from Newton, so¢ F. Cajori, " Historical Note on the Newton-
Raphson Method of Approximation,” Awer. Math. Montkly, Vel, 18, 1911, pp, 29~
35 )
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cedure, Newton finds, by a rapidly converging series, the value of y
in terms of @ and ¥, in the ecquation y*4axy-+aay —x* = 20° =0.

In 1690, Joseph Raphson (1648-1715], a fellow of the Roy:'..' Soclety
of London, published a tract, Awalysis @quationum universalis, His
method closely resembles that of Newton, The only difference is
this, that Newton derives cach successive step, boar, of approach 1o
the root, from a #ew equation, while Raphson finds it each time by
substitution in the original equation. In Newton's cubic, Raphson
would not find the second correction by the use of ’+6x%+ 108 — 1~0,
but would substitute 2.t+¢ in the original equation, finding ¢=
— c0354. Hewould then substitute 2.2946+7 in the criginal equation,
finding »=—.00004853, and so on. Raphton does not mention

| TR

Newton; he evidently considered the difference sufficient for his

methkod to be classed independently. To be emphasized is the fact

that the process which in modern texts goes by the name of “ New-

ton's method of approximation,” is really not Newton's n'.ct.,?d‘: but

. @)

Raphson's modification of it. The fors now so familiar, ¢ —f—,‘—'\.;)- was
not used by Newton, but was used by Raphson, To be sure, Raphzon
does not uze this notation; he writes f(z) and (@) out in full as poly-
nomials, It is doubtful, whether thiz method should be named after
Newton alone. Though not identical with Vieta's process, it re-
sembles Vieta's. The chief difference lies in the divisor uzed. The
divisor f’(a) is much simpler, and easier to compute than Vieta's
divisor, Raphson’s version of the process represents what J, Lagrange
recognized as an advance on the scheme of Newton, The }}'.c_thod 13
“plus simple que celle de Newton.” ! Perhaps the name ' Newton-
Raphson methed™ would be a designation more nearly representin

the facts of history. We may add that the solution o'f numerica

equations was considered geomeltrically by Thomas Baker in 10684
and Edmund Halley in 1687, but in 1694 Halley “had a very great
desire of doing the same in numbers.” The only difference between
Halley's and Newton's own method is that Halley solves a quadratic
equation at each step, Newton a linear equation. Halley n:odmcgl
also certain algebraic expressions yielding approximate cube and
fifth roots, given in 1692 by the Frenchman, Thomas F msh;{ de Lagn;t
(1665-1734). In1josand 1706 Lagny outlinesa method of(.lﬁer?nc?s,
such & methad, less systematically develo];c?d, had been previously
explained in England by John Collins, By this methed, ifa, b,¢, . . .
are in arithmetical progression, then a root may be found approxi-
mately from the first, second, and higher differences of fia), f(b),
f(‘I)ée‘\\'t.o;:’s Method of Fluxions contains also " Newton's parallele-
gram,” which enabled him, in an equation, f(x, y) =0, to find & series

! Lagrange, Réolution des equat. num., 1798, Note V, p. 133,
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in powers of x equal to the variable y. The great utility of this rule
lay in its determining the form of the geries; for, as 2oon as the law was
knewn by which the exponents in the zeries vary, then the expansion
could be effected by the method of indeterminate coefficients. The
rule is still used in determining the infinite branches to curves, or thei
figure at multiple points. Newton gave no preoi for it, nor any clue
as to how he discovered it. The proof was supplied half a century
later, by A. G. Kistner and G, Cramer, indepencently.!

In 1704 was published, as an appendix to the Opvicks, the Enu-
meralio lineariem tertii ovdings, which contains theorems on the theory
of curves. Newton divides cubics into seventy-two species, arranged
in larger groups, for which his commentators have supplied the names
“genera’ and “claswes,” recognizing fourteen of the former and seven
(or four) of the latter. He overlooked six species demanded by his
principles of classification, and afterwards added by J. Stirling, Wil-
liam Murdoch {r754-1830), and G. Cramer. He enunciates the re-
markable theorem that the five species which he names “divergent
parabelas” give by their projection every cubic curve whatever. As
& rule, the tract containa no proofs, It has been the subject of frequent
conjecture how Newton deduced his results. Recently we have gotten
at the facts, since much of the analysis used by Newton and a few
additional theorems have been discovered among the Portsmouth

apers.  An account of the four holograph manuscripts on this sub-
ject has been published by W. W, Rouge Ball, in the Transactions of
the London Mathematical Sociely (vol. xx, pp. 1e4-143). It is inter-
esting to observe how Newton beging his research on the classification
of cubic curves by the algebraic method, but, finding it laborious,
attacks the problem geometrically, and afterwards returns again to
analysis,

Space does not permit us to do mere than merely mention Newton's
prolonged researches in other departments of science, He conducted
a Jong series of experiments in optics and is the author of the corpus-
cular theory of light. The last of a number of papers on optics,
which he contributed to the Royal Seciety, 1687, elaborates the theory
of “fits.”” He explained the decomposition of light and the theory
of the rainbow, By him were invented the reflecting telescope and
the sextant (afterwards re-invented by Thomas Godirey of Phila-
delphia * and by John Hadley). He deduced a theoretical expression
for the velocity of sound in air, engaged in experiments on chemistry,
elasticity, magnetism, and the law of cooling, and entered upon geo-
logical speculations,

ring the two years following the close of 1692, Newton suffered

'S, Gonther, Vamirchic Unteriuckungen sor Gerchichte d. math, Wiss,, Leipzig®
1856, pp. l-j{;-lﬁ:. 3 )

'F. Cajori, Tesching and Wistory of Mathemalics in the U, S., Washington, 18p0,
P 42,
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from insomnia and nervous irritability. Some thought that he la-
bored under temporary mental aberration, Though he recovered his
tranquillity and strength of mind, the time of great discoveries was
over: he would study out questions propounded to him, but no longer
did he by his own accord enter upon new fields of _rcsc:r;h_. "l"he
most noted investigation after his sickness was the testing of his lunar
theory by the observaticns of Flamsteed, the astronomer royal. In

- R - i et e
1695 he was appointed warden, and in 1699 master ol the mint, which

office he held until his death, His body was interred in Westminster
Abbey, where in 1731 a magnificent monument was erected, bearing
an inscription ending with, “Sibi gratulentur mortales tale tantumque
exstitisse humani generis decus.’” It is not true that the Binomial
Theorem is also engraved on it,
We pass to Leibniz, the second and independent inventor of the
aleulus, Gottfried Wilhelm Leibniz (1646-1716) was bom in Leip-
zig. No pericd in the history of any civilized nation could kave been
Jess favorable for literary and scientific pursuits than the middle of
the seventeeath century in Germany. Yet circumstance: scem (o
Lave happily combined to bestow on the youthful genius an education
hardly otherwize obtaimable during this darkest’ gEzr.'ocl of German
history, He was brought carly in contact with the best of the culture
then existing. In his ffteenth year he enteved the University of
Leipzig, Though law was his principal stzxd_y. he applicd h.lmsc_lf
with great diligence to every branch of knowledge, Instruction in
German univerzitics was then very low, The higher 'l'.mtln‘cmau-:s
was not taught at all. We are told that 2 certain John Kuhn lectured
on Fuclid’'s Elements, but that his lectures were so c-bscur_c that none
except Leibniz could understand them. Later on, Leibniz attended,
for a half-year, at Jena, the lectures of Erhard Weigel, a philosopher
and mathematician of Jocal reputation. In 1666 Leibniz published
a treatise, De Arie Combinatoria, in which he dees not pass beyond
the rudiments of mathematics, but which contains remarkable plans
for a theory of mathematical logic, a symbolic method with formal
rules obviating the necessity of thinking., Vaguely such plans had
been previously suggested by R. Descartes and Pierre Héngone, In
manuscripts w{nich Leibniz left unpublithed ke enunciated the prind-
pal properties of what is now called logical mu!l‘npl'.c?tnon. addition,
negation, identity, class-induction and thc_nu‘.l-cms.:z. : Other theses
written by him at this time were metaphysical and juristical in char-
acter. A fortunate circumstance led Leibniz abroad. In 1672 he was
sent by Baron Boineburg on a political mission to Paris. He there
formed the acquaintance of the most distinguished men of the age.
Among these was C. Huygens, who presented a copy of hls' work on
the oscillation of the pendulum to Leibniz, and first led the gifted
young German to the study of higher mathematics. In 1673 Leibniz
1 See Philip E. B, Jourdain in Quarterly Jonr, of Matii., Vol. 51, 2918, D. 329
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P. E. B, Jourdain,! “Leibniz himseli attributed all of his mathe.
matical discoveries to hiz improvements in notation.”

Before tracing the further development of the calculus we sha)
sketch the history of that long and bitter controversy between Englis
and Continental mathematicians on the invention of the caleulus,
The question was, did Leibniz invent it independently of Newton, or
was he a plagiariat?

We must begin with the early correspondence between the parties
appearing in this dispute. Newton had begun using his notation of
fluxions in 1665.° In 1669 I. Barrow sent John Collins Newton's
tract, De Analysi per equationes, etc,

The first visit of Leibniz to London extended from the rrth of Jan.
uary until March, 1673. He was in the habit of committing to writing
important scientific communications received from others, In 13¢0
C. J. Gerhardt discovered in the royal library at Hanover a sheet of
manuscript with notes taken by Leibniz during this journey.® They
are headed “Observata Philosophica in itinere Anglicano sub initium
anni 1673."  The sheet is divided by horizontal lines into sections,
The sections given to Chymica, Mechanica, Magnetica, Bota
Anatomica, Medica, Miscellanea, contain extensive memoranda, while
those devoted to mathematics have very few notes. Under Gee-
metrica he says enly this: " Tangentes omnium figurarum, Figurarum
geometricarum explicatio per motum puncti in moto lati.” We sus.
sect from this that Leibniz had read Isaac Barrow's lectures, Newton
15 referred to only under Optica. Evidently Leibniz did not obtain a
knowledge of fluxions during this visit to London, nor is it claimed
he did by his opponents,

Various letters of 1, Newton, J. Collins, and others, up to the be-
ginning of 1676, state that Newton invented a method by which tan.
gents could be drawn without the necessity of freeing their equ

rom irrational terms. Leibniz announced in 1674 to H, Olde:
then secretary of the Royal Society, that he possessed very ge:
analvtical methods, by which he had found theorems of great 3
portance on the quadrature of the circle by means of series. Inanswer,
Oldenburg stated Newton and James Gregory had also discovered
methods of quadratures, which extended to the circle. Leibniz de-
sired to have these methods communicated to him; and Newton, at
the request of Oldenburg and Collins, wrote to the former the cele-
brated letters of June 13 and October 24, 1676. The first contained
the Binomial Theorem and a variety of other matters relating to
infinite series and quadratures; but nothing directly on the method of
1P, E. B. Jourdsin, The Noture of Mathesmatics, London, p. y1.

2 J. Edleston, Correspondence of é’.-'r Iraac Newlow and Professor Cotes, Lowsden,
18gc, p. xsl; A, De Mosgan, “Fluxicas™ and "“Commercium Epistolicum™ in
the Penny Cycdopadis,

1 C. J. Gerhardt, “Leitniz in London" in Siswsgsberickie dor K. Prexssischen
Acodemic d. Wissensch, zu Borlin, Feb.,, 181,
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fluxions. Leibnizin reply speaks in the highest terms of what .\'c'\_vton
};.\d dene, and requests ‘fu'nhcr explanation. Newton in hns'guo?(}.
Jetter just mentioned explains the way in which l':cnlou.nd }hc Bn.um.it

Theorem, and also communicates his method o{ fluxions a.".(ll fluents
in form of an aragram h': which all ;Iw letters in the sentence com-
municated were placed in alphabetical order. Thus Newton says
that his method of drawing tangents was

fa ced @ 13e JF 71 30 on 40 49rr 45 ol 120,

The sentence was, “ Data :.uqua:ion_c quu‘.curfguc_‘ﬁucm_cs quantitates
involvente flixiones invenire, et vice versa.” | ‘Having ar.dv iven
equation involving never so many flowing quantities, to fin the
fluxicns, and vice versa,”)  Surely tl::§ anagram :_tﬁordcd no hu'-.t.
Leibniz wrote a reply to John Collins, in which, _wuhoug any dcsm::
of concealment, he explained the principle, notation, and the use of
{he differential calculus. _

The death of Oldenburg brought this correzpondence to a close,
Nothing material hnppcn?rl tll 1634, when b::bmz.puh.:shed his
fisst paper on the differential caleulus in the Ak mcdxwrum.aso.l)::u
while Newton's claim to the priority of invention must be admitte
by all, it must also be granted that Leibniz was the first to give the
full benefit of the calculus to the world. Thus, while Newton's in-
vention remained a secret, communicated only 0 a :c'.\'.f ne_:::i;a. the
calculus of Leibniz was spreading over the Continent.  No rivalry or
hostility existed, as yet, between the illustrious scientists. Newton
cxpressed a very favorable apinion of L ibniz’s l:l)'cnt;o:'\s. kn own to
him through the above correspondence with Oldenburg, in the follow-
ing colebrated scholium (Principic, first edition, 1657, Book 11,
Prop. 7, scholium):—

“In letters which went between me and that most excellent geom-
eter, G. G. Leibniz, ten years ago, when I gignifed that I was in the
knowledge of a method of determining maxima pad minima, of draw-
ing tangents, and the like, and when | conczaled itin trans m%id letters
i:’.:.'olvi:".g this sentence (Data mquatione, etc,, al.’a'\'c cited), that r."x-as}
distinguished man wrote back that he had also fallen upon a method
of the same kind, and communicated his methed, which hardly dif-
fered from mine, except in his forms of words and symbols,”

As regards this passage, we shall see that Newton was :}ftc':wm]s
weak enough, as De Morgan says: “First, to deny th:: plain :u:;l ab-
vious meaning, and secondly, to omit it entirely from the third edition
of the Princi _pro
the caleulus by Leibaiz and his coadjutors, the brothers James and

' On the Continent, great progress was made in

ohn Bernoulli, and Marquis de I'Hospital. In 1695 John W allis in-
}ormed Newton by letter that “he had heard that his notions of
fluxions passed in folland with great applause by the name of ' Leib-
niz's Caloulus Differentislis,’” Accordingly Wallis stated in the pref-
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ace to & volume of kis works that the calculus differentialis was New.
ton’s methed of fluxions which had been communicated to Leibniz
in the Oldenburg letters. A review of Wallis' works, in the Acla
eruditorsm for 1696, reminded the reader of Newton’s own admission
in the scholium above cited,

For fifteen vears Leibniz had enjoyed unchallenged the honer of
being the inventor of his calculus, But in 1699 Fofio de Duillier
(1664-1733), & Swiss, who had settled in Englnng, stated in n mathe-
matical paper, presented to the Reval Society, his conviction that
I. Newton was the first inventor; adding that, whether Leibniz, the
second inventor, had borrowed anything from the other, he would
leave to the judgment of those who had seen the letters and manu-
scripts of Newton. This was the first distinct insinuation of plagiar-
ism. It would scem that the Eaglish mathematicians had for some
time been cherishing suspicions unfavorable to Leibniz. A feeling
had doubtless long prevailed that Leibaiz, during his second visit to
Lendon in 1676, had or might have seen among the papers of John
Collins, Newton's Anelysis per @quationes, ete., which contained ap-
plications of the fluxionary method, but no systematic development
or explanation of it. Leibniz certainly did see at least part of this
tract. During the week 2pent in London, he tock nete of whatever
interested him among the letters and papers of Collins. His memo-
randa discovered by C. J. Gerhardt in 1849 in the Hanover library
fill two sheets,! The one bearing on our question is headed “ Excerpta
ex tractaty Newtoni Mszc, de Analysi per mquationes numero ter-
minorum infinitag,” The notes are very brief, excepting those De
rezoludione aguationwm affeciarum, of which there s an almost com-
plete copy. This part was evidently new to him. If he examined
Newton's entire tract, the other parts did not particularly impress
him, - From it he scems to have gained nothing pertaining to the in-
finitesimal calculus, By the previous introduction of his own al-

orithm he had made greater progress than by what came to his

nowledge in Londen. Nothing mathematical that he had received
engaged his thoughts in the immediate future, for on his way back
to Holland he compozed a lengthy dialogue on mechanical subjects.

Fatio de Duillier's insinuations lighted up a flame of discord which
a whole century was hardly sufficient to extinguish, Leibaiz, who
had never contested the priority of Newton's discovery, and who
appeared to be quite satisfied with Newton’s admission in his scholium,
now appears for the first time in the controversy. He made an ani-
mated reply in the Acla ernditorum and comp%aincd to the Royal
Seciety of the injustice done him,

Here the affair rested for some time. In the Quadrafure of Curses,
published 1704, for the first tilne, a formal exposition of the method
and notation of fluxions was made public. In 17¢3 appeared an un-

1. J. Gerharde, “ Leibails In London," k. cit,
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favorable review of this in the Acfa ernditorum, stating that Newton
uses and always has used fluxions for the differénces of Leibniz, This
was considered by Newton's friends an imputation of plagiarism on
the part of their chief, but this interpretation was always strenucusly
reaisted by Leibniz.  Jokn Keidl? (1671-1721), professor of astronomy
at Oxiord, undertook with more zeal than judgment the defence of
Newton., In a paper inserted in the Philosophiical Trensections of
1708, he claimed that Newton was the first inventer of fluxions and
“that the same calculus was afterward published by Leibniz, the
name and the mede of notation being changed.” Leibniz complained

1

ta the secretary of the Royal Society of bad treatment and requested
the interference of that body to induce Keill to disavow the intention
of imputing fraud. John Keill was not made to retract his accusation;
on the contrary, was authorized by Newton and the Royal Society
to explain and defend his statement. This he did in a fong letter,
Leibniz thereupon complained that the charge was now mare open
than before, and appealed for justice to the Royal Society and to
Newton himself. The Roval Society, thus appealed to as a judge,
appointed a committee which collected and reported upon a large
mass of documents—mostly Jetters frem and to Newton, Leibniz,
Wallis, Collins, etc. ‘This report, called the Commercinm e pistalicum,
appeared in the year 1712 and again in xy22 and 1723, with a Recensio
prefixed, and additional notes by Keill, The final conclusion in the
Commercium epistolicum was that Newton was “the first inventor,”
But this was not to the point. The question was not whether Newton
was the first inventor, but whether Leibniz had stelen the method.
The committee had not fermally ventured to assert their belief that
Leibniz was a plagiarist, In the following sentence they insinuated
that Leibniz did take or might have taken, his method from that of
Newton: “ And we find ne mention of his {Leibniz’s) having aay other
Differential Method than Mouton’s before his Letter of 215t of June,
1677, which was a year after a Copy of Mr. Newlon's Letter, of the
toth of December, 1672, had been sent to Paris to be communicated
to him; and about four years after Mr, Collins began to communicate
that Letter to his Correspondents; in which Letter the Method of
Fiuxions was sufficiently Jcscrﬁb'd to any intelligent Person."”

About 1850 it was shown that what If. Oldenburg sent to Leibniz
was not Newton's letter of Dec, 1o, 1652, but only excerpts from it
which omitted Newton's method of drawing tangents and could not
possibly convey an idea of fluxions. Oldenburg's letter was found
among the Leibniz manuseripts in the Royal Library at Hanover, and
was published by C. J. Gerhardt in 1846, 1848, 1849 and 1353,' and
again later,

1 Se0 Kszays on the Life and Werk of Newton by Augustus De Morngan, odited, with
rotes and appendices, by Philip E. B, Jourdain, Chicago and London, 1914, Jour-
daln gives on p, 103 the bibliography of the publications of Newtca and Leibalz,
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Moraover, when J. Edleston in 1350 published the Correspondence
of Sir Isaac Newlon and Prefessor Coles, it became known that the
Royzl Society in 1712 had not one, but two, parcels of Collins, One
parcel contained letters of James Gregory, and Isaac Newton's letter
of Dec. 10, 1672, in full; the other parcel, which was marked *To
Leibnitz, the rgth of June, 1636 About Mr. Gregories remains,”
contained an abridgment of a part of the contents of the first parcel,
with nothing but an alluzion to Newton's method described in his
letter of Dec, 10, 1672, In the Commercinm epistolicum Newton's
letter was printed in full and no mention was made of the existence
of the second parcel that was marked *“To Leibnitz. . . ."" Thus the
Commerciume cpistolicums conveyed the impression that Newton’s une
curtailed letter of Dec. 10, 1672, had reached Leibniz in which fluxions
“was sufficiently described to any intelligent person,” while as a
matter of fact the method is not described at all in the letter which
Leibniz received.

Leibniz protested only in private letters against the proceeding of
the Roval Society, declaring that he would not answer an argument
so weak, John Bernoulli, in a letter to Leibniz, which was published
later in an anonymeous tract, is as decidedly unfair towards Newton
as the friends of the latter had been towards Leibniz. John Keill
replied, and then Newton and Leibniz appear as mutual accusers in
several letters addressed to thivd parties. In a letter dated April o,
1716, and sent to Antonio Schinella Conti (1677-1740), an Italian

riest then re:siding in Londen, Leibniz again reminded Newton of
the admission he had made in the scholium, which he was now desirous
of disavowing; Leibniz also states that he always believed Newton,
but that, seeing him connive at accusations which he must have
known to be false, it was natural that he (Leibniz) should begin to
doubt. Newton did not reply to this letter, but circulated some re-
marks among his friends which he published immediately after hearing
of the death of Leibniz, November 14, 1716, This paper of Newton
gives the following explanation pertaining to the scholium in question:
“He |Leibniz| pretends that in my book of principles T allowed him
the invention of the cakulus differentialis, independently of my own;
and that to attribute this invention to myseli is contrary to my
knowledge there avowed. But in the paragraph there referred unto
I do not find one word to this purpose.” In the third edition of the
Principia, 1726, Newton omitted the scholium and subatituted in its
place ancther, in which the name of Leibniz does not appear,

National pride and party fecling long prevented the adeption of
mpartial cpinions in England, but now it is generally admitted by

We recommend J. B, Blot and F, Lefort’s edition of the Comavercinm epistolichns
Paris, 1856, which exhibits all the alterations made in the different reprintsof this
publication and repreduces also H. Oldenburg’s letter to Leikaiz of July 26, 1676,
and other Impertant documents bearing oa the controversy.
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nearly all familiar with the matter, that Leibniz really was an inde-
sendent inventor. Perhaps the most telling evidence to show that
}.c.hniz was an independent inventor is found in the study of his
mathematical papers (collected and edited by C. J. Gerhardt, in seven
volumes, Berlin, 1849-1863), which point out a gradual and natural
evolution of the rules of the calculus in his own mind. “There was
throughout the whole dispute,” says De Morgan, “a confusion l‘)c-
tween the knowladge of fluxions or differentials and that of a caleadus
of fluxions or differentials; that is, a digested methed with general
rules,”

This controversy is to he rezretted on account of the long and bitter
i “it preduced between English and Continental
It stopped almost completely all interchange of
ideas on scientific subjectz. The English adhered closely to Newton's
methods and, until about 1820, remained, in most cases, ignorant of
the brilliant mathematical discoveries that were being made on the
Continent. The loss in point of scientific advantage was almost
entirely on the side of Britain, The only way in which this dispute
may be said, in a small measure, to have furthered the progress of
mathematics, is through the challenge problems by which each side
attempted to annoy its adverzaries. !

The recurring practiceof issuing challenge problems was insugurated
» by Leibniz, They weve, at first, not intended as debianges,
but merely as exercises in the new caleulus. Such was the problem
of the isachronous curve (to find the curve along which a body falis
slocity), proposed by him to the Cartesians in 1637, and
solved by Jakob Bernoulli, himzelf,and Jobann Bernoulli, Jakob Ber-
roulli proposed in the Acks erxditorum of 16g0 the question to find the
curve (the catenary) formed by a chain of uniform weight suspended
freely from its eads, It was reselved by C. Huygens, G. W, Leibniz,
Johann Bernoulli, and Jakob Bernoulli himszelf; the properties of the
catenary were worked out methodically by David Gregory * of Oxford
and himself, Inrtfgh {ohnn:x Bernoulli challenged the best mathemati-

f~nll

¢ians in Europe to solve the difficult problem, to find the curve (the
cycloid) along which a body falls from one peiat to another in the
shortest possible time, Leibniz solved it the day he reccived it,
Newton, de I'Hospital, and the two Bernoullis gave solutions, New-
ton’s appeared anonymously in the Philosophical Tranmd:om,"but
Johann Bernoulli recognized in it his powerful mind, * tanquam, he
says, “ ex ungue leonem.” The problem of o:t!}ogonpl trajectories (a
system of curves described by a known law being given, to describe
a curve which shall cut them all at right angles) was proposed by
Jehann Bernoulli in a letter to G, W, Leibniz in 1694. Later it was
long printed in the Acia sruditorus, but failed at first to receive much

.

1 Phil. Trane,, London, 1667,
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attention. It was again preposed in 1716 by Leibaiz, to feel the pulse
of the Englizh mathematicians '

_This may be considered as the first defiance problem professedly
.:mr.cd at .l}:c Eng! Newton solved it the same evening on which
it was delivered to him, although he was much fatigued by the day’s
work at the mint, His solution, as published, was a general plan of
an investigation rather than an actual solution, and was, on that
account, criticised by Johann Bernoulli as being of no value. Brook
Taylor undertock the defence of it, but ended by using very rc|:1:c-
hensible language. Johann Bernoulll was not to be outdone in in-
civility, and ma bitter reply, Not long afterwards Taylor sent
an open defiance to Continental mathematicians of a problem on the
integration of a fluxion of complicated form which was known to
very few geometers in England and supposed to be beyond the power
of their adversaries. The selection was injudicious, for Johann
Bernoulli had long before explained the method of this and similar
integrations, It served only to display the skill and augment the
triumph of the followers of Leibniz. The last and most unskilful
challenge was by John Keill. The problem was to find the path of a
projectile in a medium which resists proportionally to the square of
the velocity. Without first making sure that he himself could solve
t, Keill boldly challenged Johann Bernoulli to produce a solution.
The latter resolved the question in very short time, not only for &
resistance proportional ta the square, but to any power of the velocity.,

Suspecting the weakness of the adversary, he repeatedly offered to
send his solution to a confidential person in London, provided Keill

would do the same. Keill never made a reply, and Johann Bernoull
abused him and cruelly exulted over him.!

_The explanations of the fundamental principles of the calculus, as
given by Newton and Leibniz, lacked clearness and rigor. For that
reason it met with opposition from several quarters, In 1504 Berwhard
Niewwenlijt (1654-1718) of Holland denied the existence of differentials
of higher orders and objected to the practice of neglecting infinitely
small quantities, These objections Leibniz was not able to meet

satisfactorily. In his reply he said the value of % in geometry could

be expressed as the ratio of finite quantities. In the interpretation
of dx and dy Leibniz vacillated,® At one time they appear in his
writings as finite lines; then they are called infinitely small quantitics,
and again, grantileles inassignabiles, which spring from guantitales
assignabiles by the law of continuity. In this last presentation Leibniz
approached nearest to Newton,

! John Playfair, “Progress of the Mathematleal “hysical Sciences” |
E’r-:{x‘.’:‘ﬁd:.’iJ’E!l'.'f..'."!.‘.‘.!.=:'.}I Ed., ch!);:l(:'l I:;‘ :Ec"ﬁl'}%ll Ill)"glrn}:::llec:'f- o

* Consult G. Vivanti, If concallo d'Infinitesimo. Sageio storico, Nuova edlsione
Napall, tgoz. L
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in England the principles of fluxions were beldly attacked by
i George Berkeley (16835-1733), the eminent metaphysician, in
lication called the Analysi (1734). He argued with great acute-
ness, contending, among other things, that the fundamental idea of
supposing & finite ratio to exist between terms absolutely evanescent—
“ihe ghosts of departed quantities,” as he called them—was ahsurd
and unintelligible, Berkeley claimed that the second and third
fluxions were even more mysterious than the first fluxion. His con-
tention that no geometrical quantity can be exhausted by divi i
in consonance with the claim made by Zeno in his “dichotomy,”
and theclaim that the actual infinite cannot be realized, Most modern
Berkeley declared

readers recognize these contentions as untenable,
as axiomatic a lemma iavolving the shifting of the hypothesis: If x
receives an increment §, where ¢ i3 expressly supposed to be some

guantity, then the increment of x%, divided by #, is found to be x4~ '+

Ii now you take i=o, tke by pothesis iz shifted

st sophism in retaining any result that was ob-

on that § is not zero, Berkeley's lemma found

no favor among LEnglish mathematicians until 1303 when Robert

Woodhouse epenly accepted it. The fact that comect results are
obtained in the differential calculus by incorrect reasoning is explained
by Berkeley on the theory of “a compensation of errors, This theory
was later advanced also by Lagrange and L. N. M. Camot. The
publication of Berkeley's Analysé was the most spectacular mathe-
al event of the eighteenth century in England. Practically all
sitish discussions of fluxional concepts of that time invelve issues
raised by Berkeley. Berkeley’s object in writing the Analyst was to
show that the principles of fuxions are no clearer than those of Chris-
tianity, He rcpc:rcd toan “infidel mathematician™ (Edmund Halley),
of whom the story is told ! that, when he jested conceming theslogical
questions, he was repulted by Newton with the remark, “I have
studied these things; you have not." A friend of Berkeley, whenona
bed of sickness, refused spiritual consolation, because the great
mathematician Halley had convinced him of the inconceivability of
tha doctrines of Christianity. This induced Berkeley to write the
Analyst,

Replies to the Analyst were published by James Jurin (1684-1750)
of Trinity College, Cambridge under the pseudonym of “Philalethes
Cantabrigiensis” and by Joikn Wallow of Dublin. There followed
several refoinders, Jurin's defence of Newton's fluxions did not meet
the approval of the mathematician, Benjamin Robins (r7o7-1751).
In & Journal, called the Republick of Letfers (London) and later in
the Works of the Learned, a long and acrimonious controversy was
carried on between Jurin and Robins, and later between Jurin and
Heary Pemberton (1694-1771), the cditor of the third edition of

! Mach Meckanics, 1907, PP 445-840.
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