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CRITICISMS AND DISCUSSIONS.

THE “LECTIONES GEOMETRICAE” OF ISAAC BARROW.

In an article which appeared in the February number of The
Open Court 1 gave a short summary of the life of this famous
mathematician, and endeavored to suggest a reason for the unfair
estimate of his worth, especially with regard to his work on the
drawing of tangents, formed by contemporary continental mathe-
maticians, and quoted with approval by the writer of the article
on “Barrow” in the Encyclopaedia Britannica. 1 suggested that his
reading, his training and his disposition all tended to make him a
confirmed geometer, with a dislike for, a possible distrust of, and
even a certain infacility in, the analytical method of Descartes;
that this, together with the accident of his connection with Newton,
in whom he recognized a genius peculiarly adapted to analysis, and
Barrow’s determination to forsake mathematics for divinity, had
resulted in his making no attempt to complete the work he had so
well begun; and that, therefore, to form a proper conception of his
genius, it was necessary to read into his work what might have been
got out of it, and not stop short at what was actually published
under Barrow’s name.

As examples of what can be read into Barrow’s work, let us
take the following instances, most of them referring to the prin-
ciples underlying the infinitesimal calculus.

Example 1 (Lectio V1I, 14).

“If 4, B, C, D, E, F are in Arithmetical Progression and A, M.

N, 0, P, Q are in Geometrical Progression, and the last term F is

not less than the last term Q (the number of terms in the two series
being equal) ; then B is greater than M.”

The proof of this is made to depend on a proposition that, if

A'B, €%y is an arithmetical progression, and A, M, N.......

is a geometrical progression, such that B is not greater than M,
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then any term in the geometrical progression is greater than the
corresponding term in the arithmetical progression. Hence Barrow
concludes that if, in the theorem above, B is not greater than M,
then F must be less than Q, which is contrary to the hypothesis.
He then deduces that, if F=Q, then B>M, C> N, and so on.

Thus Barrow, and no more; now let us see what he might have
got out of this if he had so chosen.

If Barrow’s final conclusion is expressed differently we have:
_DEF@ JEFE

e

A ¢ € B A ¢y C B
Fig. 1.
Suppose that a straight line AB is divided into two parts at C,
and the part CB is divided at D, E, F, G in Fig. 1 (i), and at D', E,
F, G’ in Fig. 1 (ii), so that AC, AD, AE, AF, AG, AB are in

" arithmetical progression, and AC, AD', AE', AF' AG/, AB are in

geometrical progression; then AD> AD,... ... AG> AG.

Expressing this algebraically, we see that, if AC=a, and CB=
6.z, and the number of points between C and B is #-1, and H is
the rth arithmetical and H’ is the sth geometrical “mean” point;
then the relation AH > AH’ becomes

a+r.ax/n>a. [‘V{(a+ax)/a}]';v
1 e, 1+2.7/n> (142)7/7; where n> r.

Also, as CB becomes smaller and smaller the inequality tends to
become an equality. '

Moreover, if we put x/n =y, and hence r=ny/r, then

l+y.n/r < (143)%7; where n>r;
and the inequality tends to become an equality.

Naturally a man who uses the notation z+ for 2 does not state
such a theorem about fractional indices. But none the less he has
the approximation to the binomial theorem; that is, all that is neces-
sary for him to obtain the gradient of #%/r or z/%, where n>r,
although it is concealed in a geometrical form. We may as well say
that the ancient geometers did not know the expansion for sin(A+B),
when they used it in the form of Ptolemy’s Theorem, as say that
Barrow was unaware of the inner meaning of his proposition. Also
from the @ fortiori method of his proof it is evident that he knew
that the relative error was less than %/n. 1t may be objected that
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CRITICISMS AND DISCUSSIONS. 253

this is insufficient to make the relative error negligible, no matter
how small # may be. But these old geometers could use their geo-
metrical facts with far greater skill than many mathematicians of
to-day can use their analysis. Barrow does not require to know
the magnitude of the error at all; he only requires to know that the
inequality in the above example is always in one direction, i. e., the
geometric always less than, or always greater than, the correspond-
ing arithmetic mean. The way in which the theorem is used, which
indeed is his general method for drawing tangents, is of striking
ingenuity. Barrow starts with a very small, so to speak, stock-in-
trade; he is able to draw a tangent to a circle, and also to a hyperbola
of which the asymptotes are known, and he has the fact that a
straight line is everywhere its own tangent. The .tool that he most
often uses is the hyperbola; and when he cannot immediately find
a construction for a tangent to a curve, he draws a hyperbola to
touch the curve, and then draws the tangent to the hyperbola. His
criterion of tangency is the following:

o

Fig. 2,

A straight line and a curve, or two curves, will touch one
another if one curve lies totally outside or inside the other.line.
That is, the curves ABA, CBC, touch one another, if OA < OC,
whether O is supposed to be some fixed point, or the straight lines
CAOQO are all drawn parallel to some straight line fixed in position.
This criterion is important, as it will be referred to later.

In the next example chosen he does not however use any of the
above three tools; for, finding that the curves formed from the
arithmetical and geometrical means of the same order are such that
he can draw a tangent at any point of the former in a very simple
manner, he uses this as his auxiliary curve to find the tangent at any
point of the latter.

Example 2 (Lectio IX, 1).

“Let the straight lines AB, VD be parallel to one another; and
let a straight line DB, given in position, cut them; also let the lines
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EBE, FBF pass through B and be so related that, if any straight
line PG is drawn parallel to DB, then PF is olways an arithmetical
mean of the same given order between PG and PE ; also let BS
touch the curve EBE. It is required to find the tangent at B to the
curve FBF.”

The construction given is:

Make DS:DT=FG:EG; and join BT. Then BT is the re-
quired tangent (see Fig. 3).
The proof is as follows:

FG:EG=DS:DT=LG:KG; hence, since KG <EG --LG<
FG. Therefore BT is the tangent*

P F
> B
v
P (4
S
- A
Fig. 3. " Fig. 4.

Barrow then makes use of the theorem on arithmetical and
geometrical means, given as our first example, to show that the
same construction holds good if PF is a geometrical mean of the
same order between PG and PE, by proving that the curve formed
from the geometrical means touches the curve formed from the
arithmetical means at B. Lastly, he shows, by the use of an anal-
ogous curve, that a similar construction can be used for drawing
the tangent at any point F on the curve FBF, provided that the
tangent at the corresponding point E on the curve EBE is known
(see Fig. 4). He then adds the remarkable note:

“It i5 1o be noted that if EBE is supposed to be a straight line,
the line FBF is one of the parabolas or paraboliform curves. Where-
fore, what is generally known about these curves (deduced by cal-
culation* and wverified by a sort of induction, yet not anywhere
proved geometrically, as far as I am aware) flows from an im-

* This undoubtedly refers to the work of Wallis,

* Note, in passing, that this is cquivalent to saying that the gradient 'of
fle.r/ni06.(n—7)/n] is r/n times the gradient of f(x) at the point where
Fwa,
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mensely more fruitful source, and covers immumerable curves of
other kinds.'§

Now if, in Fig. 4, which shows Barrow’s method of drawing
the tangent at any point F of the paraboliform FBF, we take SA
and SD as the axes of coordinates, and suppose that PF is the rth
mean, out of # means,f between PG and PE, so that PT:PS=n:r,
and SA =g, PE=b, SP~mb, where m is the gradient of EBE; then
for the curve FBF, we have

y=FEN=SP=mb; and x=SN=PF=a.(b/a)"/n«br/s gln-r)/n;
and the equation to the curve FBF is
(y/m)/*w x/avr)/% or y=K xn/r;

whilst the gradient of the tangent at F is

PT/PF = (n/r).(PS/PF) = (n/r).(y/%) = (n/r) .Kazn/r1,

Thus the gradient is found for any curve of the form y=K x#/¢,
where p > ¢; and, by interchanging the axes, for any curve of the
form y=K 2#/2, where p < q.

Note. The axes are not necessarily rectangular in Barrow’s

figure; though of course in the consideration of the gradient they
are taken as rectangular.

In the face of the note quoted in italics above, I submit that
it is idle to contend that Barrow was not aware of the significance
of his theorem; but as before, he was not prepared to use the index
notation, let alone fractional indices. For this reason, most prob-
ably, he also leaves the point that, if EBE is a hyperbola, so that
PS.PE is a constant, m say, then y=m/b, and the equation of th
curve FBF is of the form y=K +#/2§ :

Thus Barrow proves geometrically and rigidly, without any
difficulty about the convergence of the binomial theorem, that in
general, if y=K 2, then dy/dx=n.y/x. He could have drawn the
tangent, or found its gradient, by the method which he either thought
little of, or affected to despise—ex calculo (observe the half-sneering
comparison between the methods of calculation adopted by Wal-
lis (?) and a geometrical proof, in the parenthesis in Barrow’s

t In other words, the gradicnt of f(#7/».6("")/") is r/n times the gradient
of f(x), at the point where x = 6.

1t should be observed that Barrow defines previously such a curve as the
locus of F as “having an exponent r/n.”

§ He does this in a considerablg.harder way in Lectio IX, 10; from this
general theorem the case when EBE is a straight line is deduced in exactly the
same way as for the paraboliforms, and yields the hyperboliforms y = K £-2/4.
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note, as quoted above). Thus Barrow is in possession of a method
for differentiating any explicit algebraic function of x; for he has
another theorem connecting the tangents to two allied curves, the
ordinate of one being proportional to a power of that of the other.
For instance, he could have differentiated such 2 function as

(x+a)23+ (22-a2) ¥4,

Of course Barrow does not consider such a case as this; at least,
he has not got a theorem to draw a tangent to a curve, whose
ordinates are the sum of the ordinates of two other curves, of which
the tangents at every point are known* Such a construction is
casy; but the point I make is that Barrow was in a position to do
any differentiation of this kind, by calculation, if he had had a
mind to.

Further, by combining this method with the “differential tri-
angle” method (the well-known “s and ¢” method—the prototype
of the “h and %” method of the ordinary beginner’s text-book of
to-day), he could have differentiated implicit functions also, again
by calculation. As examples of the “differential triangle” method
Barrow takes the Folium of Descartes and the Quadratriz amongst
others. A third example is of even more interest. Barrow finds
the subtangent of a curve, which turns out to have an equation
y=-tanx; morcover, he leaves it in such a form (namely, t:m=
rriyr+mm), that it is only necessary to put =1 and m =y, in order
to obtain

dy/dx-m/t=l+y’- 1+tan?s = sec?z.

In addition, the pair of figures that he gives could equally well have
been used to find the subtangent for y=sin s, in a form that imme-
diately yiclds dy/dx =m/t = cos x ; but he winds up by saying, “These
would seem to be sufficient to explain this method.”

It is of course well known that Barrow was the first to perceive
that differentiation and integration were inverse operations. This
is proved in a very simple manner by means of a theorem and its
converse.

In Fig. 5, ZGEG is a curve such that the ordinates to an axis
VD continually increase (or decrease) from left to right. VIFI is

* This ability to deal with irrational algebraic functions, and that too
without the binomial theorem, constitutes perhaps Barrow’s greatest advance

on the work of his predecessors on the infinitesimal calculus; although it by
no means constitutes his only claim to great genius.

4
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CRITICISMS AND DISCUSSIONS. 257

another curve, constructed from the former in such a way that the
rectangle contained by the ordinate DF and a given length R is
always equal to the area intercepted between the ordinates VZ and

DE.

L—#K
F R
L
Y D
z
G .’\a_
Fig. 5. Fig. 6.

- Then, completing the figure as above, and making DT:R =
DF:DE, we have LF:LK=DF:DT=DE:R (by constructlon)

LR RSEKX-DE===""" - _
but, by hypothesis, LF.R =area PDEG
: SDP.DE (as P is on :-eigltof D)
'.'_LK-;DP' i e‘,§ LI (“ “ € c T u)
and therefore KFK touches VIFI at F.

Cor. It is to be observed that DE.DT = space VDEZ.

Now if we call the general ordinate of the curve VGEG, ¥, and
the general ordinate of the curve VIFI, y,, this theorem becomes:

If by construction we are given that
fydz=areaVDEZ=R.DF=R.y;;
then dyl/dx-FL/LK (area PGED/R)/LK=DE/R,
i e, R.dy,/dx=y.

The converse theorem is thus stated and proved:

Let AMB be a curve of which the axis is AD, and let BD be
perpendicular to AD (see Fig. 6). Also let KZL be another curve
such that, when any point M is taken in the curve AB, and through
it are drawn MT, a tangent to the curve AB, and MFZ, a parallel

to DB (cutting the curve KL in Z and AD in F)—and R is a line
of given length—then TF:FM=R:FZ always. With these data,

NS RSP v ","':-""
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the space ADLK shall always be equal to the rectangle contained
by R and DB.

For if DE=R, and the rectangle BDHI is completed, and MN
is taken to be an indefinitely small arc of the curve AB, and MEX,
NOS are drawn parallel to AD; then we have

NO:MO=TF:FM=R:FZ;
-'-NO.FZ-MO.R, or FG.FZ-ES.EX.

Hence since the sum of such rectangles as FG.FZ differs only
in the slightest degree from the space ADLK, and the Tectangles
ES.EX from the rectangle DHIB, the proposition follows quite
obviously.

These proofs compare favorably with the usual analytical
proofs; and they show that Barrow not only appreciated the fact
that differentiation and integration are inverse operations, but also
recognized the necessity of proving the fact both directly and con-
versely. As I have mentioned, this is fairly well known: but what
does not seem to have been remarked is that Barrow ever made
any use of the theorems. However in the appendix to Lectio XI,
where he develops the work of Huygens on the measurement of the
circle, Barrow quotes formulas for the area and the position of the
center of gravity of any paraboliform; but he states “of which the
proofs follow without much difficulty in verious ways from what
has already been shown,” and leaves the rest to the reader. As a
matter of fact, the proofs do follow quite easily, as is shown below;
moreover Barrow could have found the radius of gyration of a
paraboliform, or other power summations, practically amounting
to (y"dz, by means of theorems previously given.

£ tE
R
K
D A D
Q) B (ﬁ’ NB

Fig. 7 (i) Fig. 7 (ii)
“If BAE is @ paraboliform curve whose axis is AD and base or

i
|
;

NP iy & Y ey




CRITICISMS AND DISCUSSIONS.

259

ordinate BDE, BT a tangent to it, and K the center of gravity; then,
sf its exponent is n/m, we have

Area of BAE =m/(m+n) of AD.BE; TD =m/n of AD;

and KD =m/(n+2m) of AD.” {See Fig. 7 (i).]

Suppose, in Fig. 7 (ii), that AHLE is a paraboliform whose
exponent is 7/s=1/a, say; let H be a near point to L on the curve,
so that HLK is Barrow’s “differential triangle”; then LK/HK =
gradient=QR/RL =a.AR/RL=a.LM/AM; and conversely.

Let AIFB be another curve, such that FM/R=-LK/HK=

a.LM/AM always, then, as has been shown, area AFBD=R.DE
always.

But in this case we have
IG:FM=LM/AM-HN/AN:LM/AM,
=AM.LK-LM.HK:LM.AN,
=(a-1).LM.HK:LM.AN;
--FG/GI=1/(a—-1)-of AM/FM.

Hence AIFB is a paraboliform, vertex A, axis AD, and ex-
ponent equal to ¢—1. Conversely,if AIFB is a paraboliform whose
exponent is #/m (=a—1); then the integral curve AHLE is a
paraboliform whose exponent is 1/a or m/(#+m); and since
DB/R = ¢.DE/AD, the area AIFBD = R.DE = m/(n+m) of
AD.DB.

Similarly,area ALED = AD.DE - (n+m)/(%+2m) of AD.DE
=m/(n+2m) of AD.DE;
“-R.a.area ALED: AD.area AFBD =n+m: 5+ 2m.

Now since FM/R=¢.LM/AM, --FM.AM.MN=R.s.LM.HK;
hence, summing, we have AK.area AFBD=R.g.area ALED;

AK:AD=n+m:n+2m, or KD=n/(n+2m) of AD.

In a similar manner the radius of gyration could have been
found from the sum of FM.MN.AM2=R.a.LM.HK.AM; and
so on for higher powers of AM.

There are many other ingenious propositions, although these
are perhaps not of such general interest as those that have already
been given. But they all go to show how far above the ordinary
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the genius of Barrow was, especially when we remember how short
was Barrow’s professional connection with mathematics, and the
relatively large and varied amount of matter that came from him
in this time. y

For instance he proves that, if ZD+AD is constant, then
ZD™.AD™-2% is a maximum, when ZD:AD =t : 9 — 2.

The proof of this theorem is generally ascribed to Cardinal
Ricci, who published it in 1666. Remembering that these lectures
were given in 1664-5-6, there is at least a doubt whether Barrow
had not anticipated him. Even if he did not, Ricci’s proof is made
to depend on a lemma that if a magnitude is divided into r equal
parts, their continued product is greater than that obtained by
dividing it into 7 parts in any other manner. Barrow deduces it as
an easy and immediate consequence of his theorem on a tangent to
a paraboliform already quoted; so that Barrow’s proof is inde-

Fig. 8.

pendent of Ricci. Barrow also shows that ZD». AD2+m swhere
2n > m, is a minimum under similar circumstances.

Again, he shows, by means of his beloved paraboliforms, that
if AB is the arc of a circle whose center is C, and BD is drawn
perpendicular to the radius AC, then the arc AB lies between

(3CA.DB)/(2CA +CD) and (2CA.DB+CD.DB)/CA+2CD);
hence, taking the arc to subtend 30 degrees and the radius of the
circle to be 113, he finds that the limits of the semi-circumference
are 355+ and 355-; thus verifying in a rigid manner the ratio
355/113 or 3195, which was found by Metius in the 16th century,
by an unjustifiable but fairly obvious manipulation of the two limits
3% 06 and 3174 4,. In the course of proving the preliminary lemmas
for the geometrical limits given above, Barrow in effect integrates
the function a.cos'x/a.

Another striking instance of Barrow’s (shall I call it con-
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tributory laziness?) is the omission of the proof of the theorem of
Lecture XI, §27.

“Let VEH be any curve, whose axis is VD and base DH, and
let any straight line ET touch it; draw EA parallel to HD. Also
let GZZ be another curve such that, when any straight line EZ is
drawn from E parallel to VD cutting the base HD in I and the
curve GZZ in Z, and a straight line of given length R is taken;
then at all times DA2:R2=DT:IZ.

“Then DA:AE=R2:space DGZI.”
The omitted proof would have run as follows:

Let VXY be a curve such that, if EA produced meets it in Y,
then EA:AD=AY:R. Divide the arc EV into an infinite number
of parts at F, M, etc. and draw FBX, MCX, etc. parallel to HD,
meeting VD in B, C, etc. and the curve VXY in the points X; also
draw FJZ, MKZ, etc. meeting HD in J, K, etc. and the curve GZZ
in the points Z.

Then AY.AD.BD=R.EA.BD=R.(EA.AD+EA.AB),

and BX.AD.BD=R.FB.AD=R.(EA.AD-IJ.AD);
hence, if XW, drawn parallel to VD, cuts AY in W, we have
“WY.AD?=-WY.AD.BD=R.(EA.AB+IJ.AD).

But, as in previous theorems, EA:AT=IJ:AB, AB.AE=
AT.IJ;

WY.AD2=R.(AT.IJ+IJ.AD)=R.DT.IJ.

Now DAZ2:R2=DT:1Z=DT.IJ:1Z.1J;

R2:1Z.1J=AD2:DT.IJ=R: WY.

Hence, since the sum of the rectangles IZ.IJ only differs in
the least degree from the space DGZI, and the sum of the lengths
WY is AY; it follows immediately that

R2:space DGZI=R:AY =DA: AE.

The important points about this theorem are

1. that Barrow says “Perhaps at some time or other the follow-
ing theorem, deduced from what has gone before, will be of service;
it has been so to me repeatedly” ;

2. that, if DT and DH are taken as the coordinate axes, and it
is taken into account that the tangent ET makes an obtuse angle
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with the z-axis, then DT=x-ydz/dy; also Ij=dy, and WY is
d(y/x). Hence the analytical equivalent of the equality

WY.AD2=R.DT.IJ is R22.d(y/x) =R.(x-ydz/dy)dy;
or d(y/x) = (xdy—ydx)/x2.

Thus Barrow had the geometrical equivalent of the differentia-
tion of 6 quotient, and found it of service repeatedly.

I will make one more quotation. As an example of a method
of construction given for drawing, in general, curves such as the
one given below, we have the following:

“I et AEG be a curve whose axisis RAD, such that, when through
any point E taken in it o straight line EDM is drawn perpendicular
$0o AD, and AE is joined, then AE is always a mean proportional
between a given length AR and AP, of the order whose exponent is

n/m. It is required to find the curve AMB of which the tangent
at M is parallel to AE.

“I mote, about the curve AM, that n:m=AE:arc AM.

“If n/m=1/2 (or AE is the simple geomeirical mean between
AR and AP), then, AEG being a circle, AMB is the primary cycloid.
Hence the measurement of the latter comes out of a general rule.”

Thus Barrow obtains the fact that the arc AM of a cycloid is
twice the corresponding chord of the circle. Most of the theorems
on the cycloid are due to Pascal; but in the Encyclopaedia Briton-
nica the rectification of the cycloid is ascribed to Wren. If the
reference there given to the Phil. Trans. of 1673 is correct, it follows
that Wren was anticipated by Barrow. It is well known that
previously only one curve, the semi-cubical parabola, had been
rectified.

Lastly it may be noted that many of Barrow’s theorems in
Lectio XI, when translated into analytical form, are nothing more
or less than theorems on the change of the independent variable in
integration. Thus he shows that

fydxsfy/(dy/dx)dy, fr2dé= [r:(dé/dr)dr.
Many other points might be made, but, in Barrow’s words,
Haec sufiicere videntur.
The two points now remaining to be considered are:
1. Why, if Barrow’s genius and knowledge were so great, did
he not complete the work he had so ably begun, and be hailed uni-
versally as the real originator of the calculus?

} '-l‘.; 2 4%\'»1
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2. What influence did his predecessors have on Barrow, and
what influence did Barrow and Newton have upon one another?

On the question as to the sources from which Barrow derived
his ideas, there is some difficulty in deciding; and the narrowness
of my reading makes me diffident in writing anything that might
be considered dogmatic on this point; so that the following remarks
are put forward more or less in the fashion of suggestions.

The general opinion would seem to be that Barrow was a mere
improver on Fermat. But if we are to believe in Barrow’s honesty
the source of his ideas could not have been the work of Fermat.
For Barrow religiously gives references to the ancient and contem-
porary mathematicians whose work he quotes. These include Car-
tesius, Hugenius, Galilaeus, Gregorius a St. Vincentio, Gregorius
Aberd. (James Gregory of Aberdeen; in connection with this
name, Barrow makes the noteworthy statement that he does not
care to put his “sickle into another man’s harvest”—the reference
being to Gregory’s work on evolutes and involutes), Euclides, Aris-
toteles, Apollonius and many others; but no mention is made of
Fermat, nor does he use Fermat's method of determining the tan-
gent by a maximum or minimum ordinate. On the other hand he
may have deliberately omitted reference to Fermat, because his
criterion of tangency of lines and curves was so similar to this
method, that he might have provoked by the reference accusations
of plagiarism. There is a distinct admiration shown for the work
of Galileo, and the idea of time as the independent variable ob-
sesses the first few lectures, an idea which he evidently obtained in
the first place from Galileo, as did Newton also. But, like Newton,
he simply intends this as a criterion by means of which he can be
sure that one of his variables shall increase uniformly. Also, we
learn from the preface that these preliminary chapters, in which
he discusses time, were an afterthought; Barrow says “falling in
with his (Librarius—the publisher, query Collins) wishes, I will
not say unwillingly, I added the first five lectures.”

The mental picture that I form of Barrow is that of the
teacher, who has to deliver lessons on a subject, reading up every-
thing he can lay his hands on, and then pugnaciously deciding that,
although most of it is very good stuff, yet he can and will “go one
better.” In the course of his work he happens on the paraboliforms,
perceives their usefulness, and is immediately led on to the great

discovery of the “differential triangle” method. I think if any one
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compares the figures used, (i) for the proof of tangency in the
case of the paraboliforms, and (ii) for the infinitesimal method,
he will no longer inquire for the source from which Barrow got
his ideas.

Personally I have not the slightest doubt that it was a flash of
inspiration suggested by the former figure (indeed it was this re-
semblance which caused me to put into analytical form the theorem
chosen as example 2 above, and led me on to the translation of the
whole work) ; it was Barrow’s luck to have first of all had occasion
to draw that figure, and secondly to have had the genius to have
noticed its significance and to be able to follow up the clue thus
afforded. As further corroborative evidence that Barrow’s ideas
were in great part his own creations we have the facts that he was
alone in considering a curve as a collection of indefinitely short
straight lines, and that, as he states in one place, he could not see
any difference between indefinitely narrow rectangles and straight
lines as the constituent parts of an area.

The answer to the question as to why Barrow did not com-

Fig. 9(i). Fig. 9(ii).
plete the work he had begun is, I think, inseparably bound up with
his connection with Newton; and I can imagine that Barrow's
interest, as a confirmed geometer, would have been first really
aroused by Newton’s poor show in his scholarship paper on Euclid,
for which Barrow was the examiner. This was in April, 1664, the
year of the delivery of Barrow’s first lectures as Lucasian pro-
fessor, and, according to Newton’s own words, just about the time
that he (Newton) discovered his method of infinite series, led
thereto by his reading of the work of Wallis and Descartes. New-
ton doubtless attended these lectures of Barrow, and the probability
is that he would have shown to Barrow his work on infinite series
(this sccms to have been the custom of the time, for it is on record
that Newton five years later, in 1669, communicated to Collins,
through Barrow, a compendium of his method of fluxions). Bar-
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row would be struck with the incongruity of a man of Newton’s
ability not appreciating Euclid; at the same time the one great
mind would be drawn to the other, and the connection thus begun
would inevitably have developed. Here we must consider that
Barrow was professor of Greek from 1660 to 1662, then professor
of geometry at Gresham College from 1662 to 1664, and Lucasian
professor from 1664 to 1669; that Newton was in residence as a
member of Trinity College from 1661 until he was forced from
Cambridge by the plague in the summer of 1665 ; that, from manu-
script notes in Newton's handwriting, it was probably during this
enforced absence from Cambridge (and Barrow) that he began to
develop his method of fluxions. From these dates I argue that
Barrow most probably developed his geometrical work from re-
searches begun for the necessities of lectures at Gresham College
in the years 1662-3-4, and further elaborated them in the years
1664-5-6: that Newton would have not only heard these lectures
before he had to leave Cambridge, but also would have had the
manuscript to read, as a loan to a pupil from a master who had
begun to take a strong interest in him; and that thus Newton would
have got the germ of the idea from Barrow, but that the accident
of the forced disconnection at this time made Newton follow the
idea up in the manner and style which was essentially his own.

The similarity of the two methods of Barrow and Newton is
far too close to admit of them being anything else but the outcome
of one single idea. For the fluxional method the procedure is as
follows:

1. Substitute x + o for x and y+yo for y in the given equation
connecting the fluents x and y.

2. Subtract the original equation and divide through by o.

3. Regard o as an evanescent quantity, and neglect o and its
powers. ‘

Barrow’s rules are, altered in order for the sake of the cor-
respondence:

2. After the equation has been formed (Newton’s rule 1) reject
all terms consisting of letters denoting constant or determined
quantities or terms which do not contain & or ¢ (which are equiva-
lent to Newton’s yo and x0 respectively) ; for these terms brought
over to one side of the equation will always be equal to zero (New-
ton's rule 2, first part).

1. In the calculation omit all terms containing a power of a or e,
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or products of these, for these are of no value (Newton’s rule 2,
second part, and rule 3). >

3. Now substitute m, the ordinate, for a, and ¢, the subtangent,
for e. This corresponds to Newton’s next step, the obtaining of
the ratio #: 5', which is exactly the same as Barrow's e:a.

The only difference is that Barrow’s way is more suitable to
his geometrical purpose of finding the “quantity of the subtangent,”
and Newton’s method is peculiarly adapted for analysis, especially
in problems on motion. It is particularly to be observed that Bar-
Tow, in giving a description of his way, writes throughout in the
first person singular. Although at the time of publication of the
lectures Barrow had seen the fluxional method, or “a compendium”
of it, as it passed through his hands on its way to Collins, yet he
left his own method as it stood; probably he used it freely (he
applies to it the words usitatum a nobis—the word usitatum being
elsewhere written to denote familiar or well known: also mark
Barrow’s use of the more or less usual plural nobis in opposition
to the first person singular when describing the method) to obtain
hints for his tangent propositions, but not thinking much of it as a
method compared with a strictly geometrical method, probably be-
cause he could not always find a geometrical construction to cor-
respond ; yet he admits it into his work “on the advice of a friend”
on account of its generality. On the other hand Newton perceives
the immense possibilities of the analytical methods introduced by
Descartes, and develops the idea on his own lines, possibly owing
to the accident of his being removed from the influence of Barrow
for a short time.

There is however another possibility. In the preface we read
that “as delicate mothers are wont, I committed to the foster care
of friends, not unwillingly, my discarded child”.... These two
friends Barrow mentions by name, “Isaac Newton. . ... (a2 man of
exceptional ability and remarkable skill) has revised the proof,
warning me of many matters to be corrected, and adding some
things of his own work™..... “John Collins has attended to the
publication.” It is just possible that Newton showed Barrow the
idea of his fluxional method before he had developed it fully, and
that Barrow developed it in some small degree as a tool for the
purpose mentioned above, and inserted it into his work. At any rate
it seems to be fairly plain that Newton was the friend on whose

* Most probably in the Optics.
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advice the method was inserted. I think however that the more
probable alternative, judging from the later work of Newton, is that
first given. This would explain the lack of what I have endeavored
to make out to be the true appreciation of Barrow’s genius. Barrow
saw that the correct development of his idea was on purely analyt-
ical lines, he recognized his own disability in this direction and the
peculiar aptness of Newton’s genius for the task; and the growing
desire to forsake mathematics for divinity made him only too
willing to hand over his discarded child to the foster care of New-
ton and Collins “to be led out and set forth as might seem good to
them,” as he says in his preface. Who can tell what might have
appeared in a second edition, “revised and enlarged,” if Barrow,
on his return to Cambridge as Master of Trinity and afterwards
Vice-Chancellor, had had the energy to make one; or if New-
ton had made a treatise of it instead of a book of “Scholastic Lec-
tures,” as Barrow warns his readers that it is? But Barrow died
two years later, and Newton was far too occupied with other mat-
ters. x ;
S J. M. CHILD.

DEereY, ENGLAND.

[Note.—Since writing the above article, the author has found that the
Lectiones Geometricae form a perfect calculus. This will be explained in a
forthcoming volume of the Open Court Classics of Science and Philosophy.
—Ebp.]

A REVIEW OF Bogssm’s “KYRIOS/ CHRISTOS. X

\ 1 \ “But she, ‘though dying,
\ " Great forethought took, in seemly wise to
‘ rLﬂ —Eur., Hek) 568f.

By odds the most imposing and important apologetic of
years is thé, deep-learned, deep-felt and }dccp-thoughted Kyrios
Ckristos of f. Wilhelm Bousset, well known by his Religion des
Judentums, his'Q ffenbarung Johannis, his Hauptprobleme der Gno-
sis, and as editor with Wilhelm Heitmiller of the Theologische
* This review, written in the first half of the year 1914, has been withheld
from the press thus far)along with several other such essays, in the hope that
after the cessation of hostlities in Europe it might more readily “ft audience

find, though few”; but the coming of such a season seems now too likely to be
indefinitely delayed. !




