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We build upon a dynamic, technology-adjusted Cobb-Douglas production function in-

spired by Olley & Pakes (1996), and we incorporate the e!ects of stochastic automation and

Baumol’s cost disease. The production function takes the form:

Ot = K
ω(1→ε)
t L

ϑ(1→ϖt)
t At,

where Ot denotes output at time t; Kt denotes the capital stock at time t; Lt denotes the labor

input at time t; and At denotes Total Factor Productivity (TFP) at time t. The parameters

ω, ε are output elasticities of capital and labor, respectively, and by construction we assume

ω+ ε = 1. The parameter ϑ introduces a capital adjustment cost e!ect into the production

elasticity, thus slightly altering the e!ective returns to scale as capital adjusts. The index

ϖt represents the state of automation at time t, and it stochastically evolves over time. As

ϖt increases, the elasticity of output with respect to labor, ε(1 → ϖt), decreases, reflecting

automation reducing the e!ective labor input in the production process.

Total Factor Productivity (TFP)

Total Factor Productivity (TFP) reflects exogenous technological innovation, autore-

gressive components, stochastic shocks, and growth rates in algorithmic e”ciency and in

computational e”ciency. We define:

At = exp

(
ϱt + ςUt→1 + Vt + φ ln(N0) + φ

ln(2)

2
t+ ↼ ln(E0) + ↼

2

1.3
t+ ↽t

)
,

5



where ϱt denotes an exogenous technological innovation trend; ςUt→1 is an autoregressive

component capturing persistent productivity e!ects; Vt ↑ N (0, ⇀2) is a random technology

shock; and ↽t ↑ N (0, ⇁ 2) represents a random noise term. The parameter φ scales the

e!ect of initial computational e”ciency N0 on TFP and the term φ
ln(2)
2 t captures continuous

exponential growth due to computational e”ciency doubling every two years (Moore, 1965).

The parameter ↼ scales the e!ect of the initial algorithmic e”ciency E0 on TFP and the term

↼
2
1.3t captures the continuous growth due to algorithmic e”ciency doubling approximately

every 1.3 years (Hernandez & Brown, 2020).

Define the initial level A0 as

A0 = exp (ϱ0 + ςU→1 + V0 + φ ln(N0) + ↼ ln(E0) + ↽0) .

Let

ccomp = φ
ln(2)

2
and calg = ↼

2

1.3
.

Then, the combined TFP growth rate becomes

c = ccomp + calg,

such that

At = A0e
ct
.

This formulation shows that TFP grows exponentially due to both computational and

algorithmic improvements, in addition to exogenous trends and shocks.
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Capital Accumulation

Capital evolves according to a standard accumulation equation:

Kt+1 = (1→ δ)Kt + It,

where δ is the depreciation rate and It = ω(Kt, Ut) is the investment function that may

depend on current capital and possibly unobserved state variables Ut. The parameter ϑ in

the production function implicitly captures constraints on the elasticity of capital due to

adjustment costs, meaning that changes in capital stock are not costless and this a!ects the

e!ective capital input in the short run.

Profit Maximization

We assume firms are perfectly competitive and choose Lt to maximize profit:

#t = PtOt →WtLt →RtKt,

where Pt is the output price, Wt is the wage rate, and Rt is the rental rate of capital.

Taking the first–order condition with respect to Lt:

▷#t

▷Lt
= Pt

▷Ot

▷Lt
→Wt = 0.

Since

▷Ot

▷Lt
= K

ω(1→ε)
t ε(1→ ϖt)L

ϑ(1→ϖt)→1
t At,

we have:

Ptε(1→ ϖt)K
ω(1→ε)
t L

ϑ(1→ϖt)→1
t At = Wt.
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Incorporating Baumol’s Cost Disease

Baumol’s cost disease implies that wages rise over time even if the productivity in the

most labor–intensive tasks does not. We model this as:

Wt = W0e
ϱt
,

with ◁ > 0. Thus, wages grow exponentially at a rate ◁, independent of labor productivity

improvements.

Stochastic Automation Index

Automation evolves in a stochastic, piecewise manner. We let ϖt represent the fraction

of tasks automated by time t:

ϖt = ϖt→1 +$ϖt, with $ϖt =
Nt∑

i=1

$ϖi.

Here, Nt is a Poisson-distributed random variable with rate ϱ, representing the number

of automation innovations up to time t. Each shock $ϖi is drawn from a distribution F!ϖ

and contributes to ϖt. Over the long run, as Nt ↓ ↔, ϖt ↓ 1, reducing the exponent on

labor, ε(1→ ϖt), toward zero.
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Adjusted Production Function and the Labor Demand Condition

Incorporating the now more explicitly defined TFP and stochastic automation, along

with Baumol’s cost disease, we return to the first-order condition:

Ptε(1→ ϖt)K
ω(1→ε)
t L

ϑ(1→ϖt)→1
t At = W0e

ϱt
.

As t ↓ ↔, At = A0e
ctotalt grows exponentially due to both computational and algorithmic

gains. Meanwhile, as ϖt increases due to automation shocks, the labor elasticity ε(1 → ϖt)

decreases. This leads to diminishing marginal productivity of labor, which reduces the

optimal labor input Lt chosen by the firm.

Thus, even though the wage Wt grows at rate ◁, the equilibrium labor input Lt can

shrink at a rate that outpaces wage growth if c is su”ciently large and the automation

process is su”ciently rapid. This can render the total labor bill, WtLt, negligible relative to

the exponentially increasing output.

Conditions for Labor Cost Negligibility

To illustrate how WtLt can become negligible, suppose Lt decreases exponentially at rate

◁
↑, with ◁

↑
> ◁. Then WtLt = W0e

ϱt · e→ϱ→t = W0e
(ϱ→ϱ→)t ↓ 0 as t ↓ ↔.

Since At grows as ect, output Ot expands rapidly. If capital costs per unit of output also

fall or remain bounded as At grows, the overall marginal cost can approach zero.
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The Impact on Prices and Transition to a Post-Labor Economy

Under perfect competition, Pt = MCt, where MCt is the marginal cost of production:

MCt =
▷(WtLt +RtKt)

▷Ot
.

As automation reduces labor dependency and as exponential improvements in TFP (from

both computational and algorithmic e”ciency) increase output dramatically, the share of

production costs attributable to labor and capital per unit output diminishes. If these

factors combine such that

lim
t↓↔

MCt = 0,

then

lim
t↓↔

Pt = 0.

This result suggests a theoretical pathway toward a post-labor economy where goods be-

come asymptotically free corresponding to the collapse of pricing mechanisms, as technologi-

cal progress—spurred by both improved compute performance and algorithmic innovation—

overwhelms rising wages from Baumol’s cost disease and ongoing capital adjustment costs.
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Summary of Conditions and Dynamics

1. TFP grows due to both computational e”ciency (doubling every 2 years) and algorith-

mic e”ciency (doubling every 1.3 years), combining into an exponential growth with

rate c = φ
ln(2)
2 + ↼

ln(2)
1.3 .

2. Automation progresses in stochastic jumps, pushing ϖt ↓ 1 over time, reducing labor’s

role in production.

3. Baumol’s cost disease ensures Wt grows at a rate ◁, but the automation–driven reduc-

tion in labor demand can dominate.

4. As t ↓ ↔, if WtLt and RtKt/Ot become negligible due to exponential TFP growth

and diminishing labor input, marginal cost MCt and hence Pt tend to zero.

Under these assumptions, technology and algorithmic advances ultimately lead to the

collapse of pricing mechanisms while preserving the production of an abundance of goods

and services in a post–labor economy, presenting a future free from labor demand.
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Author’s Note

One of the primary challenges presented by this economic paradigm shift arises due to the

collapse of the price mechanism. To put it very simply, how the fuck do we allocate resources

in capitalist markets of supply and demand if we have no price mechanism? I staunchly

reject the communist economic philosophies underlying its current marketing euphemisms,

Universal Basic Income (UBI) and Computational Communism, which would without a

doubt doom humanity’s fate down a dystopian path towards authoritarianism, where our

social, political, and economic systems are dictated by a government–operated AI centralized

planner. I will not allow that future to become a reality on my watch.

With that, I hope this paper has e!ectively conveyed the motivations behind my work in

designing and building alternative economic frameworks. My highest aspiration in taking on

this work is to participate in building a future for humanity that promotes individual liberty

and accelerates human agency through the Universal Basic Compute framework and the AI

Agent Network Market–Mimicry framework. My dedicated e!orts with Nova Aetas

Distributed Systems Intelligence are focused on developing and implementing these paradigms

to advance this mission. Together, these technology frameworks collide to create a future

liberated by technological sovereignty, leveraging decentralized and distributed systems to

elevate humanity’s social, economic, and governance structures to the next stage of

civilization.
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