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Alloy carbide

Interphase precipitation 2
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N. Kamikawa et al., IS1J Int. 54 (2014) 212.

Larger precipitation strengthening
can be obtained by refining MC
until nano size.



Various factors on dispersion of interphase precipitation
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® [nterfacial coherency —>  Density of defects
® Interfacial migrationrate = — Time for nucleation
® |[nterfacial supersaturation —  Driving force
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Variations in dispersion of interphase precipitation



Estimation of interfacial concentration
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Y.-J. Zhang et al., Acta Mater. 128 (2017) 166.

® Compared with PE model, NPLE model gives better prediction of a/y
phase equilibria in V-added low carbon steels.



Estimation of driving force for VC interphase precipitation
0.1C-0.4V, 923K, 172.8ks
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By assuming 50at% V and 50at% C:

AG = OS‘UV + OS,LLC — GVC

AG : driving force;
L - chemical potential of i;
G, : free energy

(Segregation is neglected for simplicity)
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Estimation of a growth rate
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® (o growth rate can be approximately
e estimated from maximum thickness
g 20 pum of GBF.

GBF:“grain boundry ; M(): martensite

Objective

Through quantitative analysis on dispersion of VC interphase
precipitation formed under different conditions, we aimed to clarify the
effects of o growth rate and driving force on interphase precipitation.



Experimental procedures 7

® Alloys (mass%)
0.1C-0.1V: Fe-0.1C-1.5Mn-0.05Si-0.1V
0.1C-0.2V: Fe-0.1C-1.5Mn-0.05Si-0.2V }
0.1C-0.4V: Fe-0.1C-1.5Mn-0.05Si-0.4V (Base) - |
0.1C-0.4V: Fe-0.1C-0.7Mn-0.05Si-0.4V (Low Mn)
0.1C-0.4V: Fe-0.1C-1.3Mn-0.4Si-0.4V (High Si)
0.2C-0.4V: Fe-0.2C-1.5Mn-0.05Si-0.4V
0.2C-0.9V: Fe-0.2C-1.5Mn-0.05Si-0.9V
0.3C-1.3V: Fe-0.3C-1.5Mn-0.05Si-1.3V

Effect of driving force

— Effect of a growth rate

} Effect of driving force

® Heat treatment ® Microstructural characterization
Austenitization * Optical microscopy (OM)
.............................. g?l\%?g t'}?mperature o Scanning electron microscopy (SEM) /
............................. A, Electron backscatter diffraction (EBSD)
60s-172.8ks | « Three-dimensional atom probe (3DAP)
BZ;BK
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Effects of temperature and V, C contents on microstructure

0.1C-0.4V (Base) WF / BF: Widmanstatten / baintic a.
993K 608 I 923K 608 R

® o morphology changes from GBF |nto WF/BF by Iowerlng temperature

923K, 60s
0.1C-0.1V 0.2C-0.4V ~03C13V

o Formatlon of WF/BF is suppressed by |ncreaS|n V and C contents



Effects of temperature on dispersion of VC
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Y.-J. Zhang et al., Acta Mater. 84 (2015) 375.

® Dispersion of VC becomes higher in number density and smaller in size
by lowering transformation temperature.



Effects of C content on dispersion of VC
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® Dispersion of VC is only slightly influenced by increasing bulk C content.



Effects of V content on dispersion of VC
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® Number density of VC is increased, while size of VC is slightly
decreased by increasing V content.



Effects of Mn and Si contents on microstructure

993K, 60s
0.1C-0. 4v (Base) ~_0.1C. 4v (Low Mn)  0.1C-0.4V (High Si)

® o growth IS greatly accelerated by reducmg Mn or increasing Si content.

923K, 60s
0.1C-0.4V (Base) 0.1C-0.4V (Low Mn)  0.1C-0.4V (ngh Si)
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® \WF/BF formation is promoted by reducing Mn or increasing Si content.



Effects of Mn and Si contents on dispersion of VC
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® Dispersion of VC is refined by reducing Mn or increasing Si content at
higher temperature, but almost unchanged at lower temperature.



Estimated o growth rate and driving force for precipitation
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From maximum o thickness:
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or higher Si content, and lower
with higher C content.
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precipitation, AGY°/ kJ * mol™

From interfacial composition:
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® Driving force for precipitation is

larger at lower temperature or
with higher V, lower Mn or
higher Si content, but not
influenced by bulk C content.



Effects of a growth rate and driving force on dispersion of VC 15
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® Compared with o growth rate, dispersion of VC shows better
correlations with driving force for its precipitation.



Ledgewise a growth with VC interphase precipitation

V : macroscopic o growth rate;

V . microscopic ledge growth rate;
A : ledge height;

L : ledge distance

Aging time at migrating o/y interface:
LA

L A
At = — = LZ;AZzV when L =44

R. Okamoto al., Acta Mater., 58 (2010) 4791.

® Aging time at migrating ao/y interface for precipitation of VC can be
estimated from inter-sheet spacing and macroscopic o growth rate.



Interfacial aging time at migrating o/y interface

® Inter-sheet

17

By using grain boundary diffusivity in Fe:
J. Fridberg et al., Jernkontorets Ann., 153 (1969) 263.
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® Interfacial aging time tends to be
shorter with larger o growth rate.

® |Interphase precipitation is mainly
controlled by interfacial diffusion
of V.



Classical heterogeneous nucleation

By assuming spherical critical nucleus:

o Nucleation rate:

Co/VC .
. G a/VC=Gy/VC AG
a/y interface I" =NpB*Zexp (—————
Y \ m (;a/y - 0.8J/m2 ﬁ p ( kT
y |< r* N : density of nucleation site;
B*: frequency factor;
Gy/VC Z . Zeldovich factor;

AG™: activation energy

® N becomes larger with higher bulk V content.
® [ becomes larger mainly by increasing temperature.

® / becomes larger with larger driving force for precipitation, or with
smaller a/VC and y/VC interfacial energy.

® AG” becomes smaller with larger driving force for precipitation, or
with smaller a/VC and y/VC interfacial energy.



Influencing factors on nucleation rate
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Nucleation rate is significantly

increased by lowering temperature,

increasing V content, or lowering
interfacial energy.



Comparison of estimated and measured dispersion of VC
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reproduce variation range of estimated radius is significantly
number density, while small smaller than measured ones.
interfacial energy overestimate

absolute amount.



Growth of VC at migrating a/y interface
By using interfacial diffusivity

VC T
A and aging time:
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Xy .V content;
Dy :interfacial diffusivity of V. Possible growth at migrating o/y interface




Possible growth stage of interphase precipitation

Simulation of precipitation by aging (N model):
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® \Weak influence of o growth rate on
dispersion of VC observed in this study
implies that interphase precipitation is at
the growth stage with plateau in both
number density and size.

Time/s




Summary of this study

The effects of o growth rate and driving force for precipitation on
dispersion of VC interphase precipitation were investigated.

This study can be summarized as:

® Finer dispersion of VC formed by interphase precipitation can
mainly be explained by larger driving force, while o growth rate
only plays a minor role in influencing the dispersion.
This can be understood by considering both nucleation and growth
kinetics of VC at migrating o/y interface.






Segregation of V at non K-S a/y interface

V + C atom map
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® In addition to C, V is also severely segregated at non K-S a/y interface.



Combination of EBSD, 3DAP and nano-indentation

@ EBSD — a-orientation map + 001bcc pole figure — o/y OR analyses:
<& e <001>,

RD
Deviation angle from the exact K-S OR: A6
Near K-S: A0 < 5deg.
Non K-S: A6 > 5deg.

Micro-sampling by
focused ion beam

@ 3DAP analyses — dispersion of VC precipitates

—3 (@ Nano-indentation — nanohardness of the same a grain



a/y crystallography and mechanisms of interphase precipitation27

Near K-S OR

high coherency v grain

boundary

: /

Kurdjumov-Sachs (K-S)
orientation relationship (OR):
(111),// (011),, [101], // [111],

Non K-S OR
low coherency

y grain
boundary
* /

Ledge Mechanism

Immobile interface
with K-S OR

Disordered interface
without K-S OR

R.A. Ricks et al., Acta Metall. 31 (1983) 853.



Precipitation strengthening

Ashby-Orowan model:

G : shear modulus of a;
B 1.2Gb | X b : Burgers vector of a;
At = 0.84 217l ) n% L : inter-particle spacing of MC on slip plane;
x : average diameter of MC on slip plane;
7 r . average radius of MC
X =21 |=
3 T. Gladman, Mater. Sci. Tech. 15 (1999) 30.
Hardness increment: o N
2 2001 Ti o g
AHV = HVy_qadea — HVpure Fe S Nb Ly A
Ny & A
= HVss + HVyis1 + HVppe - i Precipitation
o 100F o 7
>§ .
T ISoIid solution + Dislocation
0 L | N | N | N 1 N | L
0 0.02 0.04 0.06

L7 +In(x/2b)/ nm

® Higher hardness increment of o by precipitation strengthening can be
obtained by reducing the inter-particle spacing of MC.



Single variant of randomly dispersed VC precipitates




Promotion of VC nucleation at non K-S interface

LowenergyT

OR

v DBy 2 TNear K-S
4 VC
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........ ’ + VC * ¢ \

o iB_N Segregation

Baker-Nutting (B-N) OR:
(001),, /7 (001),,c [110], // [100],,c

o (J/m?) | Exp./Calc. | Ref.

a/y K-S ~0.3 Calc. [1]

o/y random ~0.8 Exp. [2]
v/VC semi-coh. ~1.9 Calc. [3]
v/VC incoh. ~2.6 Calc. [3]
a/VC semi-coh. ~0.6 Calc. [4]

Ao = 0qvc + 0y vc — Ouyy

= 2.2 ]/m? Near K-S case

= 2.4 ]/m? Non K-S case

® Promotion VC nucleation at non
K-S interface is mainly caused by
higher interfacial diffusivity and
segregation of V, instead of
higher a/y interfacial energy.

[1]1 M. Enomoto et al., PTM (2005) 67.

[2] L.E. Murr, Int. Phen. in Metals and Alloys (1975) 124.
[3] T. Furuhara et al., ISIJ Int. 43 (2003) 1630.

[4] D.H.R. Fors et al., Phys. Rev. B. 82 (2010) 195410.



VC precipitation in o with different a/y orientation relationship 31

923K, 60s
o orientation map Three-dimensional V atom map

O : Near K-S (A0 = 5deg.); —
A : Non K-S (A0 > 5deg.) WF (A6 =0.8deg.)

i

PAGB: prior y grain boundary; M(y): martensite;
GBF: grain boundary o; WF: Widmanstatten «o;

AO: deviation angle from the exact Kurdjumov-
Sachs orientation relationship (K-S OR)

® o transformation is proceeded by the migration of both near K-S and
non K-S a/y interface.

® Almost no VC precipitate exists in WF with near K-S OR, while VC
interphase precipitation is observed in GBF with non K-S OR.



Effects of a/y OR on dispersion of VC interphase precipitation 32
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Y.-J. Zhang et al., Scr. Mater. 69 (2013) 17.

® As a/y OR deviates from exact K-S, number density of VC increases
significantly at first and remains almost constant later, while the size of
VC is only slightly increased.

® Higher number density of VC in o grains with non K-S OR results in
higher nanohardness compared with those with near K-S OR.



