

Modelling of the motion of phase interfaces; coupling of thermodynamics and kinetics

John Ågren
Dept of Materials Science and Engineering
Royal Institute of Technology
S-100 44 Stockholm

Ackowledgement:

Joakim Odqvist, Henrik Larsson, Klara Asp Annika Borgenstam, Lars Höglund, Mats Hillert

Content

- Sharp interface
- Finite thickness interface
 - solute drag theories
 - Larsson-Hillert
- Diffuse interface
 - phase field
- No interface
- Conclusions

Modeling of the local state of phase interface (Hillert 1999)

Diffuse interface: no sharp boundary between interface and bulk (phase-field method)

No interface: Only bulk properties are used, i.e. not even an operating interfacial tieline calculated.

Sharp interface

(Stefan Problem)

The rate of isobarothermal diffusional phase transformations in an N component system may be predicted by solving a set of N-1 diffusion equations in each phase : 2(N-1)

Boundary conditions at interface:

- Composition on each side

2(N-1)

- Velocity of interface

<u>+1</u>

2*N*-1

These boundary conditions must obey:

Flux balance equations

N-1

N

Net number of extra conditions needed at phase interface:

How to formulate the N extra conditions?

Baker and Cahn (1971): *N* response functions. For example in a binary system $\beta \rightarrow \alpha$:

$$f_1(x_{B,}^{\alpha}x_{B,}^{\beta}v,T)=0$$

$$f_2(x_B^{\alpha}, x_B^{\beta}, v, T) = 0$$

Simplest case: Local equilibrium.

- The interfacial properties do not enter into the problem except for the effect of interfacial energy of a curved interface (Gibbs-Thomson) and the interface velocity does not enter.

$$\Delta\mu_{A} = \mu_{A}^{\alpha}(x_{B}^{\alpha}, T) - \mu_{A}^{\beta}(x_{B}^{\beta}, T) = 0$$

$$\Delta\mu_B = \mu_B^{\alpha}(x_B^{\alpha}, T) - \mu_B^{\beta}(x_B^{\beta}, T) = 0$$

Dissipation of driving force at phase interface

The driving force across the interface is consumed by two independent processes:

- Transformation of crystalline lattice
- Change in composition by transinterface diffusion

The processes are assumed independent and thus each needs a positive driving force.

Carbon diffuses across interface from α to γ .

Driving force for trans-interface diffusion:

Driving force for change of crystalline lattice:

All quantities expressed per mole of Fe atoms.

$$z_C = N_C / N_{Fe} = x_C / x_{Fe}$$

Trans-interface diffusion (Hillert 1960)

Combination with finite interface mobility yields:

$$\begin{split} J_C^t &= -L_{CC} \Delta \mu_C \\ \Delta \mu_C &= -\frac{v}{V_s L_{CC}} \blacktriangleleft_C^{\gamma/\alpha} - z_C^{\alpha} \\ \Delta \mu_{Fe} &= \frac{v}{V_s} \left(\frac{{V_s}^2}{M} + \frac{{z_C^{\gamma/\alpha}}}{L_{CC}} \blacktriangleleft_C^{\gamma/\alpha} - z_C^{\alpha} \right) \end{split}$$

 $\Delta\mu_{C}$ and $\Delta\mu_{Fe}$ are functions of the composition on each side of the interface and may be described by suitable thermodynamic models of the γ and α phase, respectively.

Trans-interface diffusion substitutional system

Combination with finite interface mobility yields:

$$\Delta \mu_A = \frac{v}{V_m} \left[\frac{V_m^2}{M} + \frac{x_B^{\gamma/\alpha}}{L_{BB}} \left(\mathbf{t}_B^{\gamma/\alpha} - x_B^{\alpha} \right) \right] > 0$$

$$\Delta \mu_B = \frac{v}{V_m} \left[\frac{{V_m}^2}{M} - \frac{(1 - x_B^{\gamma/\alpha})}{L_{BB}} \mathbf{\ell}_B^{\gamma/\alpha} - x_B^{\alpha} \right]$$

Since $\Delta \mu_A > 0 \Delta \mu_B < 0$.

 $\Delta\mu_{A}$ and $\Delta\mu_{B}$ are functions of the composition on each side of the interface and may be described by suitable thermodynamic models of the γ and α phase, respectively.

For a given interface velocity the equations may be solved to yield the composition on each side of interface.

"Sharp" interface with with representative composition (Ågren 1989)

$$-J_{A}^{t} = J_{B}^{t} = -L_{BB}\Delta(\mu_{B} - \mu_{A}) = \frac{v}{V_{m}} \mathcal{L}_{B}^{i} - x_{B}^{\alpha}$$

$$\Rightarrow \Delta G_{m}^{t} = -\mathcal{L}_{B}^{i} - x_{B}^{\alpha} \Delta(\mu_{B} - \mu_{A})$$

$$\Delta G_{m}^{m} = x_{A}^{i} \Delta \mu_{A} + x_{B}^{i} \Delta \mu_{B}$$

$$\Delta \mu_{A} = \frac{v}{V_{m}} \left[\frac{V_{m}^{2}}{M} + \frac{x_{B}^{i}}{L_{BB}} \mathcal{L}_{B}^{i} - x_{B}^{\alpha} \right]$$

$$\Delta \mu_B = \frac{v}{V_m} \left| \frac{V_m^2}{M} - \frac{(1 - x_B^i)}{L_{BB}} \mathbf{C}_B^i - x_B^\alpha \right|$$

Aziz model (1982)

Similar as the previous sharp interface models but:

$$-J_A^t = J_B^t = -\frac{D^t}{V_m f^{\alpha}} (a_B^{\gamma/\alpha} - a_B^{\alpha})/\lambda$$

where

 $a_B^{\gamma/\alpha}$ and a_B^{α} : B activity on γ and α side of interface

 f^{α} : activity coefficient in α , D^{i} : diffusivity in interface

 λ : Thickness of interface

Assuming activity coefficients constant one finds:

$$k_B^{\alpha/\gamma} = \frac{\beta + {}^{eq}k_B^{\alpha/\gamma}}{\beta + 1} \quad \beta = \frac{v}{D^i/\lambda}$$

Finite interface thickness

Diffusion inside the interface → solute drag Property

Distance y

Solute drag theory (Cahn, Hillert and Sundman etc)

Solution of steady state equation inside interface.

$$-J_A^t = J_B^t = -L_{BB} \frac{\partial (\mu_B - \mu_A)}{\partial y} = \frac{v}{V_m} \left(\mathbf{t}_B - \mathbf{t}_A^{\alpha} \right)$$

A specific model yields $(\mu_B - \mu_A) = f(y, x_B)$. For given v and x_B^{α} we may thus calculate $x_B^{\alpha}(y)$.

Integration of dissipation over interface:

$$\Delta G_m^{sd} = -\frac{V_m}{v} \int_{\delta} J_B^t \frac{d(\mu_B - \mu_A)}{dy} dy$$

Total driving force

$$\Delta G_m^{tot} = \sum_{k=1}^n x_k^{int} (\mu_k^{\gamma} - \mu_k^{\alpha})$$

Available driving force across phase-interface (Hillert et al. 2003)

$$\Delta G_m^{tot} = \sum_{k=1}^n x_k^{int} (\mu_k^{\gamma} - \mu_k^{\alpha})$$

$$x_k^{\text{int}} = \frac{x_k^{\gamma} J_k^{\alpha} - x_k^{\alpha} J_k^{\gamma}}{J_k^{\alpha} - J_k^{\gamma}} = x_k^{\alpha} \quad \text{when } J_k^{\alpha} = 0$$

KTH VETENSKAP OCH KONST

For a given composition of growing α :

Driving force = Dissipation:

The compositions on each side of the phase interface depend on interface velocity and they approach each other.

$$u_B^{\alpha} = f(T, v) \rightarrow u_B^{\alpha eq} \quad \text{as } v \rightarrow 0$$

 $u_B^{\gamma} = g(T, v) \rightarrow u_B^{\gamma eq} \quad \text{as } v \rightarrow 0$

Above a critical velocity transformation turns partitionless.

ALEMI Grenoble May 8-9, 2006 Materials Science and Engineering

Maximum possible growth rate for alloy 1

ALEMI Grenoble May 8-9, 2006 Materials Science and Engineering Maximum possible (partitionless) growth rate for alloy 2

Calculated limit of the massive transformation in Fe-Ni alloys (dashed lines) calculated for two different assumptions on properties of interface.

(Odqvist et al. 2002)

Exp: Borgenstam and Hillert 2000

Fe-Ni-C

The interfacial tieline depends on the growth rate. (Odqvist et al. 2002)

- At high growth rates the state is close to paraequilibrium.
- At slower rates there is a gradual change towards NPLE.
- For each alloy composition there is a maximum size which can be reached under non-partitioning conditions.
 - This size may be reached before there is carbon impingement. See also Srolovitz 2002.

Ferrite formation under "practical" conditions

in Fe-Ni-C (Oi et al. 2000)

Thickness of M spike in γ :

$$D_M / v$$
.

Local equilibrium, i.e. quasi paraequilibrium impossible if $D_M / v < atomic$ dimensions.

$$v = 4.8 \ 10^{-7} \,\text{ms}^{-1}$$

 $D_M / v = 3.5 \ 10^{-14} \,\text{m}$

0.2

0.6

Carbon, mass%

1200°C - 5min

720°C - 60min

Simulations Fe-Ni-C Odqvist et al. 2002

Larsson-Hillert (2005)

Lattice-fixed frame of reference

Absolute reaction rate theory of vacancy diffusion:

$$J_{k} = \frac{-M_{k}RT}{V_{m}\Delta z} \left[x_{k}^{\alpha} exp\left(\frac{\Delta\mu_{k}^{*}}{2RT}\right) - x_{k}^{\beta} exp\left(\frac{\Delta\mu_{k}^{*}}{2RT}\right) \right]$$

 $\Delta\mu_k^* = \Delta\mu_k$ less ideal entropy of mixing

$$v = -V_m \sum J_k$$

Simulation 1 (close to local equilibrium)

Simulation 2a vacancy diffusion with composition gradient

Solute trapping impossible!

Add term for cooperative mechanism

$$J_{k} = \frac{-M_{k}RT}{V_{m}\Delta z} \left[x_{k}^{1} exp\left(\frac{\Delta\mu_{k}^{*}}{2RT}\right) - x_{k}^{2} exp\left(\frac{\Delta\mu_{k}^{*}}{2RT}\right) \right]$$

Simulation 2b vacancy + cooperative mechanism

a nucleates here

ALEMI

Grenoble May 8-9, 2006

Materials Science and Engineering

Simulation 2c - other direction vacancy + cooperative mechanism

ALEMI

Simulation 3 Ternary system A-B-C, C is interstitial

Simulation 3

Diffuse interfaces – phase-field method

 ϕ not conserved

Cahn - Allen equation :

$$\oint = -M_{\phi} \frac{\delta G}{\delta \phi} = -M_{\phi} \left(\frac{1}{V_{m}} \frac{\partial G_{m}}{\partial \phi} - \varepsilon^{2} \nabla^{2} \phi \right) \qquad J_{k} = -\sum L_{kj}^{"} \nabla \frac{\delta G}{\delta c_{j}}$$

Concentration conserved:

$$\oint_{k} = -\nabla J_{k} \qquad \text{(n-1equations)}$$

$$J_{k} = -\sum L_{kj}^{"} \nabla \frac{\delta G}{\delta c_{j}}$$

$$\frac{\delta G}{\delta c_{j}} = \left(\frac{1}{V_{m}} \frac{\partial G_{m}}{\partial c_{j}} - \kappa_{j}^{2} \nabla^{2} c_{j}\right)$$

Thermodynamic and kinetic properties of diffuse interfaces are needed, e.g.

$$G_m(\phi,c_k)/V_m$$
.

Phase-field modelling of solute drag in grain-boundary migration (Asp and Agren 2006)

$$G_m = G_m^{\alpha} + \phi^2 \left(-\phi \right) W(x_B)$$

$$W(x_B) = x_B W_B + (1 - x_B) W_A$$

Example 1 – grain boundary segregation

Equilibrium solute segregation

$$\nabla \frac{\partial G_m}{\partial x_B} = 0 =>$$

$$x_B^{gb} = x_B^{\alpha} \exp\left(\frac{-\phi^2 (1 - \phi)^2 (W_B - W_A)}{RT}\right) \qquad W_A = 18V_m \left(\frac{\sigma_A}{\varepsilon}\right)^2$$

$$W_B = W_A - 16RT \ln k^{gb/\alpha}$$

Equilibrium solute segregation by Cahn

$$C = C_0 \exp\left(\frac{-E(x)}{kT}\right)$$

Example 1 – grain boundary segregation

Two grains devided by a planar grain boundary

 Concentration distribution at t1=30 sec and t2=1 h

Example 1 – grain boundary segregation

Concentration profile at t1=30 sec
 and t2=1 h

ALEMI Grenoble May 8-9, 2006 Materials Science and Engineering

t1

t2

Example 1 – grain boundary segregation

• Initial state: A circular grain with $\phi=1$ surrounded by another grain where $\phi=0$. Homogenous concentration of $x_B=0.01$.

Phase-field at t=0

 Concentration profile as a function of time

- Velocity as a function of curvature
- Concentration x_B in the grain boundary

ALEMI Grenoble May 8-9, 2006 Materials Science and Engineering

- Smaller initial grain
- Concentration profile as a function of time

Smaller initial grain

ALEMI Grenoble May 8-9, 2006 Materials Science and Engineering

Phase-field method contains similar steps as in sharp and finite interface modelling:

- Some properties of interface modelled.
- Solution of a diffusion equation to obtain concentreation profile.
- Cahn-Allen equation plays a similar role as the equation for interfacial friction.

But: Thickness of interface must be treated not only as a numerical parameter but as a physical quatity.

Example: Formation of WS-ferrite in steels

Loginova et al. 2004

Loginova et al. 2004

No Interface at all

Svoboda et al. 2004 (by Onsager extremum principle) Ågren et al. 1997 (from other principles)

$$\frac{d\Re}{dt} = \frac{1}{\Re} M_{eff} \left(\sum_{i=1}^{C} x_i^{\beta} \mu_i^{\alpha} - G_m^{\beta} - \frac{2\sigma V_m^{\beta}}{\Re} - \frac{\Re}{M} V_m \right)$$

where

$$M_{eff} = \frac{1}{\sum_{i=1}^{C} \frac{\left(x_{i}^{\beta} - x_{i}^{\alpha} \right)^{2}}{x_{i}^{\alpha} M_{i}}}$$

- Very efficient method quite simple calculations.
- No details about the phase interface.
- Remains to investigate its accuracy.

Conclusions

- Sharp interface methods are computationally simple but may show problems with convergency.
- Solute drag models may be better than sharp interface models but have similar convergency problems.
- Larsson-Hillert method very promising
- Phase-field approach very powerful no convergency problems – heavy computations.
- No-interface methods quick calculations, accuracy remains to be investigated.