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1. The issue

• We want to predict the rate of phase 
transformations (e.g. austenite -> ferrite)

• We want to calculate the rate from 
quantities which are ”easily” accesible.

• We want to tackle ”real” problems.
• Conditions for rapid transformation? 
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The mode of transformation?

• Partitional – composition change
– Partitional for all elements (very slow)
– Non partitional for substitutional 

elements (rapid)

• Non partitional for all elements
– Massive (very rapid)
– Martensitic (very-very rapid)

• Change in mode
– Change in rate
– Change in morphology
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Rate controlling mechanisms

• Diffusion
– in bulk
– along grain boundaries and interfaces
– across interfaces (trans-interface) –

solute drag

• Interface migration – finite mobility
• Mixed mode (bulk-diffusion and 

interface mobility)
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Modeling of the local state of 
phase interface 

Sharp interface - no thickness
Finite interface – thickness

continuous variation in properties

Diffuse interface
no sharp boundary between interface and bulk 
(phase-field method)

No interface
Only bulk properties are used, i.e. not even an 

operating interfacial tieline calculated.
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Transport equations in each phase solved.
In an N component system N extra conditions
are needed at phase interface.
- Local equilibrium
- Para equilibrium
- Interface kinetics

2. Sharp interface
(Stefan Problem)
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Local equilibrium non partitioning
(LENP)
Ternary system Fe-M-C

”Quasi-paraequilibrium” (LENP)
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Para equilibrium
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LENP and PARA equilibrium very 
powerful methods because...

• Only involve bulk thermodynamic 
properties.

• Thermodynamic extremes. Truth in 
between?

• No information on interface needed.



13
Alemi 7, ISIJ
Tokyo, March 26-28, 2008

From G. Inden 2008
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Transition para to LENP

• Thickness of alloy element spike

• Early stages high growth rate: PARA
• Later stages lower rates change to 

LENP.
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G. Inden 2008
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Interface kinetics
The driving force across the interface 
is consumed by two independent 
processes:
- Transformation of crystalline lattice 

(finite interface mobility)
- Change in composition by trans-

interface diffusion

The processes are assumed 
independent and thus each needs a 
positive driving force.
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Transinterface diffusion and finite interface 
mobility yields:
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ΔμA and ΔμB are functions of the composition
on each side of the interface and may be described
by suitable thermodynamic models of the γ and α
phase, respectively. 

Example:  substitutional system A - B
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x

xα

xγ

For a given interface
velocity the equations
may be solved to
yield the composition
on each side of interface.
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Aziz model (1982)

Similar as the previous sharp interface 
models but:
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”Sharp” interface with with 
representative composition 
(Ågren 1989)
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Limit for partitionless transformation

Mole fraction B

Jönsson and Ågren 1990
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3. Finite interface thickness

Diffusion inside the interface solute drag
Property

Distance y

Ι
ΙΙ

ΙΙΙ Solute drag theory (Cahn, Hillert and
Sundman, Brechet and Purdy)
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• Solution of steady state equation inside interface.

• Integration of dissipation over interface:

• Total driving force
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Driving force = Dissipation:

The compositions on each side
of the phase interface depend
on interface velocity and they app-
roach each other. 

Above a critical velocity trans-
formation turns partitionless. ),(
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Alloy 1

Driving diffusion in γ

Maximum possible growth rate for alloy 1

Non-parabolic growth in early
stages.
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Fe-Ni-C
The interfacial tieline depends on the growth rate.
(Odqvist et al. 2002)

Decreasing growth rate

- At high growth rates the state 
is close to paraequilibrium.

- At slower rates there is a gradual 
change towards NPLE.

- For each alloy composition there is
a maximum size which can be 
reached under non-partitioning 
conditions. 
This size may be  reached before 
there is carbon impingement.
See also   Srolovitz 2002.
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Thickness of M spike in γ: 
DM / v.
Local equilibrium, i.e. quasi 
paraequilibrium impossible 
if DM / v < atomic 
dimensions.

v = 4.8 10-7 ms-1

DM / v = 3.5 10-14 m

Ferrite formation under ”practical” conditions
in Fe-Ni-C (Oi et al. 2000)
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Calculated limit of the massive 
transformation in Fe-Ni alloys
(dashed lines) calculated for 
two different assumptions on
properties of interface.

(Odqvist et al. 2002)

Exp: Borgenstam and Hillert 2000
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Larsson-Hillert (2005)

βα
kk xx   Absolute reaction 

rate theory of vacancy
diffusion:

Finite volume technique
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distance

α nucleates here

βα /
B

eq x

αβ /
B

eq x
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distance

α nucleates here
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• Larsson and Borgenstam analyzed 
the critical limit for the massive 
transformation in Fe-Ni and found
– high diffusivity across phase interface 

displaces critical limit towards one-
phase field.

– High interface mobility displaces critical 
limit towards T0.

These results are in agreement with 
Jönssons analysis.
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β
B

LENPu

0Bu

0Cu

α nucleates here

Ternary system A – B – C (interstitial)

B,AC MM ⋅=1000
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• Some properties of interface modelled.
• Solution of a diffusion equation to obtain 

concentreation profile.
• Cahn-Allen equation plays a similar role as 

the equation for interfacial friction.

But: Thickness of interface must be treated 
not only as a numerical parameter but as a 
physical quatity.

4. Diffuse interfaces –
phase-field method



35
Alemi 7, ISIJ
Tokyo, March 26-28, 2008

Loginova et al. 2004

Example: Formation of WS-ferrite 
in steels
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Loginova et al. 2004

γ

α
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5. No Interface at all
Svoboda et al. 2004 (by Onsager 
extremum principle)
Ågren et al. 1997 (from other 
principles)
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• Very efficient method – quite simple 
calculations.

• No details about the phase interface.
• Satisfactory accuracy for low 

supersaturation, less good for high.
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6. Conclusions

• Sharp interface methods are 
computationally simple but may show 
problems with convergency.

• Solute drag models may be better than 
sharp interface models but have similar 
convergency problems.

• Larsson-Hillert method very promising
• Phase-field approach very powerful – no 

convergency problems – heavy 
computations.

• No-interface methods – quick calculations, 
limited accuracy.
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