

Methods to represent the interface conditions during austenite to ferrite transformation

John Ågren Dept of Materials Science and Engineering Royal Institute of Technology S-100 44 Stockholm

Ackowledgement:

Joakim Odqvist, Henrik Larsson, Klara Grönhagen Annika Borgenstam, Lars Höglund, Gerhard Inden Mats Hillert

Content

- 1. The issue
- 2. Sharp interface
	- LENP
	- PARA
	- Interface kinetics
- 3. Finite thickness interface
	- -Solute drag theories
	- Larsson-Hillert
- 4. Diffuse interface
	- Phase field
- 5. No interface at all
- 6. Conclusions

1. The issue

- We want to predict the rate of phase transformations (e.g. austenite -> ferrite)
- We want to calculate the rate from quantities which are "easily" accesible.
- We want to tackle "real" problems.
- Conditions for rapid transformation?

The mode of transformation?

- •• Partitional – composition change
	- Partitional for all elements (very slow)
	- Non partitional for substitutional elements (rapid)
- •• Non partitional for all elements
	- Massive (very rapid)
	- Martensitic (very-very rapid)
- •• Change in mode
	- Change in rate
	- Change in morphology

Rate controlling mechanisms

- Diffusior
	- in bulk
	- along grain boundaries and interfaces
	- across interfaces (trans-interface) solute drag
- Interface migration finite mobility
- •• Mixed mode (bulk-diffusion and interface mobility)

Modeling of the local state of phase interface

- ¾ Sharp interface no thickness
- \triangleright Finite interface thickness

continuous variation in properties

 \triangleright Diffuse interface

no sharp boundary between interface and bulk (phase-field method)

 \triangleright No interface

Only bulk properties are used, i.e. not even an operating interfacial tieline calculated.

2. Sharp interface (Stefan Problem)

Transport equations in each phase solved. In an *N* component system *N* extra conditions are needed at phase interface.

- -- Local equilibriun
- -Para equilibrium
- Interface kinetics

Local equilibrium

Local equilibrium non partitioning (LENP) Ternary system Fe-M-C

"Quasi-paraequilibrium" (LENP)

Para equilibrium

 $f^{}_{2} = \mu^{\alpha}_{C}(u^{\alpha}_{C}, u^{\alpha}_{M}, T) - \mu^{\gamma}_{C}(u^{\gamma}_{C}, u^{\gamma}_{M}, T) = 0$ $f_1 = \mu_X^{\alpha}(u_C^{\alpha}, u_M, T) - \mu_X^{\gamma}(u_C^{\gamma}, u_M, T) = 0$ $X = F e_{_{(1-u_M)}} M_{_{u_M}} \Rightarrow \mu_{_X} = (1 - u_{_M}) \mu_{_{Fe}} + u_{_M} \mu_{_M}$ $X - C$ (2 effective components) $N = 2$ $u_M = u_M^{\cdot \cdot} = u_M^{\cdot \cdot}$ $\mu_C^{\alpha}(u_C^{\alpha},u_M^{\alpha},T)-\mu_C^{\gamma}(u_C^{\gamma},u_M^{\gamma})$ $\mu^{\alpha}_\chi(u^{\alpha}_C,u_{_M},T)$ – $\mu^{\gamma}_\chi(u^{\gamma}_C)$ α α

LENP and PARA equilibrium very powerful methods because...

- Only involve bulk thermodynamic properties.
- Thermodynamic extremes. Truth in between?
- No information on interface needed.

From G. Inden 2008

Transition para to LENP

• Thickness of alloy element spike

- Early stages high growth rate: PARA
- Later stages lower rates change to LENP.

G. Inden 2008

Interface kinetics

- The driving force across the interface is consumed by two independent processes:
	- - Transformation of crystalline lattice (finite interface mobility)
	- - Change in composition by transinterface diffusion

The processes are assumed independent and thus each needs a positive driving force.

$$
f_k = \mu_k^{\alpha} - \mu_k^{\gamma} - (\Delta \mu_k^{cryst} + \Delta \mu_k^{trans}) = 0
$$

Example: substitutional system *A - B*

Transinterface diffusion and finite interface mobility yields:

$$
\Delta\mu_A = \frac{v}{V_m} \left[\frac{V_m^2}{M} + \frac{x_B^{\gamma/\alpha}}{L_{BB}} \left(x_B^{\gamma/\alpha} - x_B^{\alpha} \right) \right] > 0
$$

$$
\Delta \mu_B = \frac{v}{V_m} \left[\frac{V_m^2}{M} - \frac{(1 - x_B^{\gamma/\alpha})}{L_{BB}} \left(x_B^{\gamma/\alpha} - x_B^{\alpha} \right) \right]
$$

 $\varDelta \mu_A$ and $\varDelta \mu_B$ are functions of the compositior on each side of the interface and may be described by suitable thermodynamic models of the γ and α phase, respectively.

For a given interface velocity the equations may be solved to yield the composition on each side of interface.

Aziz model (1982)

Similar as the previous sharp interface models but:

$$
-J_A^t = J_B^t = -\frac{D^i}{V_m f^\alpha} (a_B^{\gamma/\alpha} - a_B^\alpha)/\lambda
$$

where

 λ : Thickness of interface α $a_{B}^{\gamma/\alpha}$ and a_{B}^{α} : B activity on γ and α side of interface $^\alpha$: activity coefficient in $\alpha,\,D^\iota$: f^α : activity coefficient in $\alpha,$ D^i : diffusivity in interface

Assuming activity coefficients constant one finds:

$$
k_B^{\alpha/\gamma} = \frac{\beta + {}^{eq}k_B^{\alpha/\gamma}}{\beta+1} \quad \beta = \frac{\nu}{D^i / \lambda}
$$

"Sharp" interface with with representative composition (Ågren 1989)

$$
-J_A^{trans} = J_B^{trans} = -L_{BB}\Delta(\mu_B - \mu_A) = \frac{v}{V_m} (x_B^i - x_B^\alpha)
$$

\n
$$
\Rightarrow \Delta G_m^{trans} = -\left(x_B^i - x_B^\alpha\right)\Delta(\mu_B - \mu_A)
$$

\n
$$
\Delta G_m^{cryst} = x_A^i \Delta \mu_A + x_B^i \Delta \mu_B
$$

\n
$$
\Delta \mu_A = \frac{v}{V_m} \left[\frac{V_m^2}{M} + \frac{x_B^i}{L_{BB}} \left(x_B^i - x_B^\alpha \right) \right]
$$

$$
\Delta \mu_B = \frac{v}{V_m} \left[\frac{V_m^2}{M} - \frac{(1 - x_B^i)}{L_{BB}} \left(x_B^i - x_B^\alpha \right) \right]
$$

BB

Alemi 7, ISIJ Tokyo, March 26-28, 2008

α *B*

Limit for partitionless transformation

Jönsson and Ågren 1990

Alemi 7, ISIJ Tokyo, March 26-28, 2008

3. Finite interface thickness

Diffusion inside the interface \rightarrow solute drag Property

 Solute drag theory (Cahn, Hillert and Sundman, Brechet and Purdy)

Distance *y*

 \bullet Solution of steady state equation inside interface.

$$
-J_A^t = J_B^t = -L_{BB} \frac{\partial(\mu_B - \mu_A)}{\partial y} = \frac{v}{V_m} (x_B - x_B^{\alpha})
$$

 $x_B^{\alpha}(y)$. A specific model yields $(\mu_B - \mu_A) = f(y, x_B)$. ν and $x_B^$ α For given v and $x^{\alpha}_{\scriptscriptstyle{B}}$ we may thus calculate

•Integration of dissipation over interface:

$$
\Delta G_m = -\frac{V_m}{v} \int_{\delta} J_B^t \frac{d(\mu_B - \mu_A)}{dy} dy + \frac{v}{M} V_m
$$

 \bullet Total driving force

$$
\Delta G_m^{tot} = \sum_{k=1}^n x_k^{int} (\mu_k^{\gamma} - \mu_k^{\alpha})
$$

Driving force = Dissipation:

The compositions on each side of the phase interface depend on interface velocity and they approach each other.

$$
u_B^{\alpha} = f(T, v) \to u_B^{\alpha eq} \text{ as } v \to 0
$$

$$
u_B^{\gamma} = g(T, v) \to u_B^{\gamma eq} \text{ as } v \to 0
$$

Above a critical velocity trans formation turns partitionless.

Maximum possible growth rate for alloy 1

Fe-Ni-CThe interfacial tieline depends on the growth rate. (Odqvist et al. 2002)

- At high growth rates the state is close to paraequilibrium.
- At slower rates there is a gradual change towards NPLE.
- For each alloy composition there is a maximum size which can be reached under non-partitioning conditions.
- This size may be reached before there is carbon impingement. See also Srolovitz 2002.

Ferrite formation under "practical" conditions in Fe-Ni-C (Oi et al. 2000)1200°C - 5min

Thickness of M spike in γ :

DM / v.

Local equilibrium, i.e. quasi paraequilibrium impossible if *DM / v <* atomic dimensions.

$$
\begin{array}{|c|c|}\n\hline\nv = 4.8 \, 10^{-7} \, \text{ms}^{-1} \\
\hline\nD_M / v = 3.5 \, 10^{-14} \, \text{m}\n\end{array}
$$

Calculated limit of the massive transformation in Fe-Ni alloys (dashed lines) calculated for two different assumptions on properties of interface.

(Odqvist et al. 2002)

Exp: Borgenstam and Hillert 2000

- Larsson and Borgenstam analyzed the critical limit for the massive transformation in Fe-Ni and found
	- high diffusivity across phase interface displaces critical limit towards onephase field.
	- High interface mobility displaces critical limit towards To.

These results are in agreement with Jönssons analysis.

4. Diffuse interfaces – phase-field method

- •Some properties of interface modelled.
- Solution of a diffusion equation to obtain concentreation profile.
- Cahn-Allen equation plays a similar role as the equation for interfacial friction.

But: Thickness of interface must be treated not only as a numerical parameter but as a physical quatity.

Example: Formation of WS-ferrite in steels

Loginova et al. 2004

Alemi 7, ISIJ Tokyo, March 26-28, 2008

Loginova et al. 2004

Alemi 7, ISIJ Tokyo, March 26-28, 2008

5. No Interface at all

Svoboda et al. 2004 (by Onsager extremum principle) Ågren et al. 1997 (from other principles)

$$
\frac{d\Re}{dt} = \frac{1}{\Re} M_{\text{eff}} \left(\sum_{i=1}^{C} x_i^{\beta} \mu_i^{\alpha} - G_m^{\beta} \frac{2 \sigma V_m^{\beta}}{\Re} - \frac{\dot{\Re}}{M} V_m \right)
$$

where

$$
M_{\text{eff}} = \frac{1}{\sum_{i=1}^{C} (x_i^{\beta} - x_i^{\alpha})^2}
$$

- Very efficient method quite simple calculations.
- No details about the phase interface.
- Satisfactory accuracy for low supersaturation, less good for high.

6. Conclusions

- Sharp interface methods are computationally simple but may show problems with convergency.
- Solute drag models may be better than sharp interface models but have similar convergency problems.
- Larsson-Hillert method very promising
- • Phase-field approach very powerful – no convergency problems – heavy computations.
- No-interface methods quick calculations, limited accuracy.