

Methods for simulating the α - γ migration in ternary and multicomponent systems

Introductory presentation for discussion

What do we want?

- Migration rate as function of alloy composition, temperature and time.
- Morpholgy?
- Effect of various physical effects:
 - Diffusion
 - Solute drag
 - Finite interface mobility
 - Stresses
 - External fields (magnetic fields)

— ...

Methods to simulate migrating interfaces

Special class of mathematical problems introduced by Josef Stefan, Slovene physiscist, 1890, who modeled ice formation - the Stefan problem

- Sharp interface
 - Front tracking
 - No front tracking
- Diffuse interface
 - Phase field
 - Level set

Sharp-interface methods

- No thickness
 - Interface is just a discontinuous change in state (variables), e.g. density, atomic arrangement, composition.
 - Some properties may be given to the interface, e.g. interfacial energy, representative composition, dissipation due to interfacial reactions, e.g. interface mobility.
- Finite thickness
 - Interface has a finite but well defined thickness
 - Properties (but not necessarily their derivatives)
 vary continously between the two phases.

Sharp interface – front tracking

- The position of interface is obtained as a function of time usually from velocity.
- Equation(s) for the interface velocity needed. For example from,
 - Flux balances (conservation laws) $v\Delta c_k = \Delta J_k$
 - Extremum principle v = f(driving force)
- Usually special conditions are assumed at interface (LE, NPLE, PARA etc)

Sharp interface – no front tracking

- No special equation for the interface velocity.
- No special treatment of the interface.
- Position of interface is calculated afterwards (in each time step) by a simple equation.

Sharp interfaces +/-

- + Relatively easy to use in 1D
- + Sometimes exact or approximate analytical solutions
- + Possible to add effect interfacial energy, finite interface mobility (mixed mode), solute drag.
- Difficult to apply in general 2- or 3D cases.
- Difficulties with convergency when special conditions used at interface.

DICTRA (front tracking):

- Local equilibrium and diffusion control.
- Calphad description and mobilities needed.
- Full numerical solution of multicomponent 1D diffusion in planar, cylindrical or spherical symmetry.
- Possible to account for finite interface mobility, interface energy and elastic energy (in a simplified way).
- Possible to apply PARA conditions.

MATCALC (front tracking):

- Based on extremum principle.
- Calphad description and mobilities needed.
- No calculation of local equilibrium
- No detailed solution of diffusion profiles steady state solutions.
- Possible to account for finite interface mobility, interface energy and elastic energy (in a simplified way).

Larsson-Hillert, 2005 (no front tracking):

- Based on absolute reaction rate theory.
- Calphad description and mobilities needed.
- No special treatment of interface
- Numerical solution of diffusion profiles by finite volume method.
- Possible to account for finite interface mobility, interface energy and elastic energy (in a simplified way).

Chen et al. 2008 (front tracking):

- Calphad description and mobilities needed.
- No detailed solution of diffusion profiles modified steady state solutions.
- Equations for interface flux balances are expressed in terms of mobilities and chemical potential differences.
- Possible to account for finite interface mobility, interface energy and elastic energy (in a simplified way).

Odqvist et al. 2002 (front tracking – finite thickness):

- Calphad description and mobilities needed.
- Detailed solution of diffusion profiles inside interface
- Account for finite interface mobility, interface and disipation by difusion inside interface.
- Coupled to DICTRA but problems with convergency.

Solute drag and interface mobility in simplest sharp interface model

Combination with finite interface mobility yields:

$$\Delta \mu_{A} = \frac{v}{V_{m}} \left[\frac{V_{m}^{2}}{M} + \frac{x_{B}^{\gamma/\alpha}}{L_{BB}} \left(x_{B}^{\gamma/\alpha} - x_{B}^{\alpha} \right) \right]$$

$$\Delta \mu_B = \frac{v}{V_m} \left[\frac{V_m^2}{M} - \frac{(1 - x_B^{\gamma/\alpha})}{L_{BB}} \left(x_B^{\gamma/\alpha} - x_B^{\alpha} \right) \right]$$

 $\Delta\mu_A$ and $\Delta\mu_B$ are functions of the composition on each side of the interface and may be described by suitable thermodynamic models of the γ and α phase, respectively. If $\Delta\mu_A$ and $\Delta\mu_B$ vanish -> Local eq.

Diffuse interface methods (van der Waals) – phase field

- Continuum method not atomistic-
- Properties vary gradually from one phase to the other.
- In a strict sense no well defined thickness of the phase interface.

 $\delta \cong \left(\frac{d\phi}{dx} \right)^{-1}$

A set of partial differential equations

- Cahn-Hilliard type of equations for conserved quantities, e.g. molar fractions.
- Cahn-Allen-Ginzburg-Landau equations for non-conserved quantities, e.g. type of phase (for example $\phi = 1$ for ferrite and $\phi = 0$ for austenite)
- Equations obtained from a Gibbs energy functional.

The Gibbs energy functional:

$$G = \int_{\Omega} \left(G_m(\phi_j, x_k) / V_m + f(\text{quadratic of } \nabla \phi_j, \nabla x_k) \right) d\Omega$$

Other energy contributions, e.g. elastic energy may be added.

$$\dot{c}_{k} = \nabla \cdot \left[\sum L_{kj} \nabla \left(\frac{\delta G_{m}}{\delta x_{j}} \right) \right]$$

$$\dot{\phi}_{j} = -M_{\phi_{j}} \frac{\delta G}{\delta \phi_{i}}$$

Two methods to express: $G_m(\phi_i, x_k)$

1. Warren-Boettinger:

$$G_m(\phi, x_k) = f(\phi)G_m^{\alpha}(x_k) + (1 - f(\phi))G_m^{\beta}(x_k) + g(\phi)w(x_k)$$

f and g polynomials in ϕ .

2. Kim - Steinbach:

$$G_m(\phi, x_k) = f(\phi)G_m^{\alpha}(x_k^{\alpha}) + (1 - f(\phi))G_m^{\beta}(x_k^{\beta}) + g(\phi)w$$

$$\partial G_m^{\alpha} / \partial x_k^{\alpha} = \partial G_m^{\beta} / \partial x_k^{\beta}$$

$$x_k = f(\phi)x_k^{\alpha} + (1 - f(\phi))x_k^{\beta}$$

Several methods to express: $f(\text{quadratic of } \nabla \phi_j, \nabla x_k)$

Level set

- Not so much used in materials science but popular among mathematicians.
- Introduce a function $\phi(x,t)$. The position of interface is then defined by $\phi(x,t) = const$.
- Difficult to enter the appropriate physics.

