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1. Background — some remarks

There is no "versus”!

It is generally accepted that a transformation
may be both displacive and diffusion controlled!

But: Many authors mean diffusionless when
they say displacive.
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Two “versus”:

« Reconstructive/displacive

- refers to the details of the
crystallographic changes at the phase
interface.

« Diffusional/diffusionless

- Refers to if there is a change in
composition at the phase interface
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Displacive transformations:
- Interface migration by coordinated motion of
atoms (transformation dislocations)
- Coherent or semi-coherent interfaces
- Crystallographic orientation relationships
- Shape changes

Reconstructive

- Incoherent interfaces

- Interface migration by random jumps of
atoms

- No crystallographic orientation relationships
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KTH Examples of reactions involving

OCH KONST 9%

FCC->BCC in steels

Allotriomorphic
Widmanstatten X X
Martensitic X X
Massive X X
Bainitic X X
Pearlite X X
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What determines if a transformation
is diffusional or diffusionless?

Thermodynamic limits
Kinetic limits
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The T, line: Thermodynamic limit for
diffusionless transformation 2 «.

—_
—

—
S
g
p—

2. Thermodynamic limits

,,,,
e
—_——
— -
=

June 6-11, Avignon, France

\%

soherom



0

Ak
FKTH

VETENSKAP
59 OCH KONST 0%

2010
June 6-11, Avignon, France ’..he rO'm J



Temperature for start of
reaction.

a) Diffusion control
b) Diffusionless
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3. Kinetic limits

Even if a transformation is
thermodynamically possible the kinetics
may be such that it cannot occur.

Depends on the balance between the
different processes e.g. long-range
diffusion and interfacial reactions.

The local state of the migrating phase
interface must be understood.
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The local state at phase interface

Conventional view: G, o

-atoms jump individually from
the parent phase across the

phase interface and attach to

the growing phase.

o v v
Problem: All atoms must have a vA "

lower chemical potential in the o
growing phase. This is not the 1 |

case during a diffusionless VAR 1
transformation.
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4. Modelling of local state at a sharp
phase interface

Hillert 1960 (FCC >BCC in Fe-C)

Aziz 1982 (for solidification)

Agren 1989 (FCC =>BCC in Fe-C)
Olson et al. 1989 (FCC >BCC in Fe-C)

Two processes coupled in series at the
interface

- change in composition (trans interface
diffusion)

- change of crystalline structure
(intrinsic interface mobility)
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These models all predict:

Diffusion controlled growth at high
temperatures (low driving forces) - the
growing phase has a different
composition.

Transition to diffusionless growth at low
temperatures (high driving forces) -
the growing phase has the same
composition as the parent phase.
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Modeling the local state of the moving
phase interface

Response functions (Baker and Cahn 1971) For
example in a binary system y 2 a.:

fl(xg,xg‘,v,T) =0
fz(xg,xg‘,v,T) =0

Simplest case: Local equilibrium.

- The interfacial properties do not enter into the
problem except for the effect of interfacial
energy of a curved interface (Gibbs-Thomson)
and the interface velocity does not enter.

A/Uy/a—:uA(X T)— (X5, T)=0
A/Uy/a_:us(x T)— g (X5, T) =0

=L .oherom
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Deviation from local equilibrium during
vy 2 a in Fe-C,

Carbon diffuses across G
interface from a to y. NFe
Yo

M Fe

Driving force for trans-interface —
diffusion:

Driving force for change of /:?a

crystalline lattice: . .

All quantities expressed . _
per mole of Fe atoms. Lc NC / NFe Xc /X|:e

=L .oherom
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Trans-interface diffusion

)

ation

'Jct: =—Lcc (ﬂgla ﬂc) I—CCA///&
The Gibbs energydissipation from this process

_G=—JdlAul = \%AGtFe

S

AG;, is thedriving force for trans-interfacediffusionper
mole of Fe. Understeadystateat the phaseinterface:

AGy, = (27’“ ~7 )AM’“

=L .oherom
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Finite interface mobility

The totalavailablechemical driving forceis
(permole Fe):

AGE™ = (ul® — p )+ 28 (™ = )= Aual® + 28 Apl
andthedriving force to overcome the finite
interface mobility is obtainedfrom:

AGE™ = AGE +AG;, i.e. AG[ =AGI™ -AG;, :

AG, = Ayt + Zg/aA/UC = %Vs
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The response functions become:

Vv
Vs LCC

v(V? oz .
v(M+LC & _ZC)}O
CC

S

.I: (Zy/a ZC,V) A,Ll /a(zy/a a)_l_

(zg’“ —zg)zO

f,(2'" 28 V) = Aud,”" (20, 28) -

Apl'“ (2l 22) and Aull*(z/'*,2¢) may be described
by suitablethermodynamic modelsof the y anda phase,
respectivdy.

The composition oneachside of interfacemay be calculated
for a giveninterfacevelocity.

In thelimit of verylow velocity werecoverlocal equilibrium.

2010
June 6-11, Avignon, France ..he rO-m J
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log(velocity)

The compositions on each side

of the phase interface depend

on interface velocity and they app-
roach each other.

ug = f(T,v) > ug™ asv-0
u; =g(T,v) > ul™ asv—-0

Above a critical velocity trans-
formation turns partitionless.
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1 partitionless growth possible

u-fraction of solute B

partitionless growth with spike

| log(velocity)‘ T
in y possible

Maximum possible (partitionless) growth rate
for alloy 2
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Aziz model for transinterface
diffusion(1982)

Similar as the previous sharp interface model

but: .
X6 ety PGV
X, o ° B+1 D'/ A

D' : diffusivity in interface
A:Thicknessofinterface
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(Odqvist et al. 2002)

Exp: Borgenstam and Hillert 2000
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Simulation of diffusional growth
with composition gradient
(Larsson 2005)

Ol nucleates here
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Mole fraction B 3 2 2 3
. (transinterface diffusion)

interface mobility

J6nsson and Agren 1990
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One conclusion:

It is not possible to have a slow (compared
to rate of diffusion) diffusionless reaction,
I.e. a diffusionless reaction has to be very
fast compared to the rate of diffusion.
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6. Application to bainite in steel

» the crystallographic aspects are those of a
displacive transformation.

« the microstructure formed at low
temperatures looks similar to martensite

But ...

 The kinetics is much slower and similar to
what is expected for C-diffusion control.
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1960 - Hillert analyzed experimental
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For alloys assume the same barrier and para
equilibrium

VETENSKAP
OCH KONST 9%

1.51Si 1.51 Mn.

Exp. data from Sugimoto et al

(2000)
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Exp. data from Sugimoto et al
(2002)
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Conclusions

A reaction that is slow enough to allow
diffusion can never be diffusionless.

A displacive reaction can be diffusional
or diffusionless.

The bainitic reaction is an example of
displacive reaction that is controlled by
the rate of carbon diffusion.
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