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1. Background – some remarks

There is no ”versus”!

It is generally accepted that a transformation 
may be both displacive and diffusion controlled!

But: Many authors mean diffusionless when 
they say displacive.
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Two ”versus”:

• Reconstructive/displacive 

- refers to the details of the 
crystallographic changes at the phase 
interface.

• Diffusional/diffusionless

- Refers to if there is a change in 
composition at the phase interface
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Displacive transformations:

- Interface migration by coordinated motion of 

atoms (transformation dislocations)

- Coherent or semi-coherent interfaces

- Crystallographic orientation relationships

- Shape changes

Reconstructive

- Incoherent interfaces

- Interface migration by random jumps of 
atoms

- No crystallographic orientation relationships
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Examples of reactions involving 
FCCBCC in steels

Reaction Displacive Reconstructive Diffusional Diffusionless

Allotriomorphic x x

Widmanstätten x x

Martensitic x x

Massive x x

Bainitic x x

Pearlite x x
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What determines if a transformation 
is diffusional or diffusionless?

Thermodynamic limits

Kinetic limits
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2.Thermodynamic limits

The T0 line: Thermodynamic limit for 
diffusionless transformation   . 
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Temperature for start of 
reaction.

a) Diffusion control

b) Diffusionless

g

 + Fe3C

Deviation from local equilibrium during
g   in Fe-C when some extra driving force

(undercooling) needed.

a

b
0T
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3. Kinetic limits

Even if a transformation is 
thermodynamically possible the kinetics 
may be such that it cannot occur.

Depends on the balance between the 
different processes e.g. long-range 
diffusion and interfacial reactions.

The local state of the migrating phase 
interface must be understood.



12

June 6-11, Avignon, France

The local state at phase interface 

Conventional view:
-atoms jump individually from 
the parent phase across the 
phase interface and attach to 
the growing phase.

Problem: All atoms must have a 

lower chemical potential in the 
growing phase. This is not the 
case during a diffusionless 
transformation.
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4. Modelling of local state at a sharp 
phase interface

Hillert 1960 (FCC BCC in Fe-C)

Aziz 1982 (for solidification)

Ågren 1989 (FCC BCC in Fe-C)

Olson et al. 1989 (FCC BCC in Fe-C)

Two processes coupled in series at the 
interface

- change in composition (trans interface 
diffusion)

- change of crystalline structure 
(intrinsic interface mobility)
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These models all predict:

Diffusion controlled growth at high 
temperatures (low driving forces) – the 
growing phase has a different 
composition.

Transition to diffusionless growth at low 
temperatures (high driving forces) –
the growing phase has the same 
composition as the parent phase.
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Modeling the local state of the moving 
phase interface

Response functions (Baker and Cahn 1971) For 
example in a binary system g  :

Simplest case: Local equilibrium.

- The interfacial properties do not enter into the 
problem except for the effect of interfacial 
energy of a curved interface (Gibbs-Thomson) 
and the interface velocity does not enter.
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FeCFeCC xxNNz // 

Carbon diffuses across 
interface from  to g.

Driving force for trans-interface
diffusion:

Driving force for change of
crystalline lattice:

All quantities expressed 
per mole of Fe atoms.

Deviation from local equilibrium during
g   in Fe-C. 
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The compositions on each side
of the phase interface depend
on interface velocity and they app-
roach each other. 

Above a critical velocity trans-
formation turns partitionless. ),(
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5. Transition diffusional/diffusionless 
growth
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Alloy 1

Driving diffusion in g

Maximum possible growth rate for alloy 1 1

Non-parabolic growth in early
stages.
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partitionless growth with spike
in g possible

Alloy 2

Maximum possible (partitionless) growth rate 
for alloy 2

partitionless growth possible
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Aziz model for transinterface 
diffusion(1982)

Similar as the previous sharp interface model 

but:
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Calculated limit of the massive 
transformation in Fe-Ni alloys
(dashed lines) calculated for 
two different assumptions on
properties of interface.

(Odqvist et al. 2002)

Exp: Borgenstam and Hillert 2000Exp: Borgenstam and Hillert 2000
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Simulation of diffusional growth
with composition gradient 
(Larsson 2005)
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Kinetic limit for partitionless transformation

Mole fraction B

Jönsson and Ågren 1990
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One conclusion:

It is not possible to have a slow (compared 
to rate of diffusion) diffusionless reaction, 
i.e. a diffusionless reaction has to be very 
fast compared to the rate of diffusion.
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6. Application to bainite in steel

• the crystallographic aspects are those of a 
displacive transformation.

• the microstructure formed at low 
temperatures looks similar to martensite

But ... 

• The kinetics is much slower and similar to 
what is expected for C-diffusion control.
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1960 – Hillert analyzed experimental 
growth rates of Widmanstätten ferrite 
and upper bainite in high-purity Fe-C.

He evaluated the temperature where 
acicular ferrite could start growing.

Thermodynamic limit for bainite
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Assume C partitioning:

Hillert 1960

Hillert et al. 2003

Result for high-purity Fe-C
Alloys



31

June 6-11, Avignon, France

1.51Si 1.51 Mn.

Exp. data from Sugimoto et al
(2000)

1.51Si

Exp. data from Sugimoto et al
(2002)

For alloys assume the same barrier and para 
equilibrium
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Conclusions

A reaction that is slow enough to allow 
diffusion can never be diffusionless.

A displacive reaction can be diffusional 
or diffusionless.

The bainitic reaction is an example of 
displacive reaction that is controlled by 
the rate of carbon diffusion.


