Transformation barriers for growth of WS-ferrite and bainitic ferrite

ROYAL INSTITUTE OF TECHNOLOGY

Lindsay Leach, Lars Höglund, Annika Borgenstam and John Ågren

Materials Science and Engineering KTH (Royal Institute of Technology) SE 100 44 Stockholm, Sweden

Acknowledgements Mats Hillert and Hero-m center

Contents

- 1. Introduction the diffusional growth model
- 2. Improvements of Zener-Hillert model thermodynamic barriers
- 3. Inverse calculation evaluation of the barrier
- 4. Conclusions

1. Introduction - the diffusional growth model

The ALEMI group started as a consequence of the bainite controversy;

does bainite form as a diffusional decomposition product from austenite or does it form diffusionless as martensite with carbon redistribution between bainitic ferrite and parent austenite afterwards?

The diffusional growth model

- Growth of the ferritic component of bainite is essentially similar to the growth of Widmanstätten ferrite at higher temperatures, i.e.
 - The rate is essentially controlled by the rate of carbon diffusion in the austenite.
 - The interface is essentially in local equilibrium for Fe-C alloys (PARA equilibrium for alloy steels).
 - There are certain crystallographic orientation relationships, i.e. KS leading to shape changes and relief effects on a surface as in martensite.
 - Deviation from local equilibrium is expected at low temperatures.
 - Effect of stresses and plastic deformation may be important at lower temperatures.

The Zener-Hillert model

Approximations

- Diffusion controlled growth of a ferrite plate under local equilibrium
- Steady-state diffusion problem
- Effect of interfacial energy and edge curvature by the Gibbs-Thomson equation
- Dilute solution approximation
- Maximum growth rate selection of edge
 curvature

The Zener-Hillert model - cont

- Plates having a tip radius larger than a critical radius, ρ_{cr} grow
- The modified Zener-Hillert equation gives velocities over varying plate tip radii
- v_{max} is the maximum velocity at the optimal curvature, ρ_{opt}

hero-m

The Zener-Hillert model - cont

ROYAL INSTITUTE OF TECHNOLOGY

 $v = \frac{D}{8\rho_{-}} \frac{u_C^{\gamma/\alpha} - u_C^{\circ}}{u_C^0 - u_C^{\alpha/\gamma}}$ $\rho_{cr} = \frac{\sigma^{\alpha/\gamma}}{-\Delta G_m^0 / V_m}$ $-\Delta G_m^0 \cong RT(u_C^{\gamma/\alpha} - u_C^0)$ $v \cong \frac{D}{8\sigma^{\alpha/\gamma}V} \frac{RT(u_C^{\gamma/\alpha} - u_C^0)^2}{u_C^0 - u_C^{\alpha/\gamma}}$ $\sqrt{vu_C^0/TD} \propto (u_C^{\gamma/\alpha} - u_C^0)$

hero-m

The WB_s temperature

ROYAL INSTITUTE OF TECHNOLOGY

 $\sqrt{vu_C^0/TD} \propto (u_C^{\gamma/\alpha}-u_C^0)$

Hillert 1960

Need for thermodynamic barriers

- If there were full local equilibrium the growth rate would always become zero when the initial carbon content of austenite falls on the austeniteferrite phase boundary, Ae₃.
- 1960 Hillert found that the experimental data on growth rates extrapolated to a much lower carbon content see WB_s .
- I.e. it seems as an extra driving force is needed for onset of the ferrite growth.
- A thermodynamic barrier was introduced to represent this behaviour.

2. Improvements of Zener-Hillert model – thermodynamic barriers

 Avoid the Gibbs-Thomson approximation by adding the effect of curvature and interfacial energy directly to the Gibbs energy of ferrite and calculate the modified equilibria using;

$$G_m^{\alpha}(\rho, B_m) = G_m^{\alpha} + V_m \sigma^{\alpha/\gamma} / \rho$$
$$v = \frac{D}{2\rho} \frac{u_{C\rho}^{\gamma/\alpha} - u_C^0}{u_C^0 - u_{C\rho}^{\alpha/\gamma}}$$

• At $\rho = \rho_{cr}$ and $u_{C\rho}^{\gamma/\alpha} = u_C^0$ and v = 0

• The interfacial energy assumed constant and taken from Hillert 1960.

Hillert et al. 2004

One needs to cool below a temperature WB_s lower than the A_{e3} line but higher than T_0 in order for the WS or bainitic ferrite to grow. This undercooling is represented by a critical driving force i.e. A "thermodynamic barrier".

ROYAL INSTITUTE

OF TECHNOLOGY

Calculation of growth rate with a barrier

 The equations modified with the barrier and the interfacial energy then reads

$$G_m^{\alpha}(u_j^{\alpha}, T, \rho, B_m) = G_m^{\alpha}(u_j^{\alpha}, T) + V_m \sigma^{\alpha/\gamma} / \rho + B_m(v, u_j, T)$$
$$v = \frac{D}{2\rho} \frac{u_{C\rho B}^{\gamma/\alpha} - u_C^0}{u_C^0 - u_{C\rho B}^{\alpha/\gamma}}$$

 At each temperature and content of original austenite the growth rate is calculated as a function of radius of curvature and the maximal value is chosen and compared with the experimental value.

3. Inverse calculation – evaluation of the barrier

- For each piece of experimental information one may thus calculate the barrier that gives the best agreement with the experimental growth rate provided that
 - the thermodynamic properties
 - the diffusivity
 - the interfacial energy

are known.

• The diffusivity depends on temperature and carbon content but the theory uses only a single number. We have chosen the maximum value in each experiment i.e. the value for the carbon content closest to the interface, i.e. $u_{C\rho B}^{\gamma/\alpha}$

We evaluate the barrier

 $B_m(v,u_j,T)$ For binary Fe-C: $B_m(v,T)$

 \bullet The barrier for zero growth rate thus is the barrier for onset of growth and gives the WB_{\rm s} temperature.

Example Fe - 0.9 mass% C

OF TECHNOLOGY

Relation between barrier and growth rate

Physical interpretation? Resistance to movement of austenite/ferrite interface due to:

- Friction at the interface
- Strain due to volume misfit
- Accumulation of dislocations

- At the start the barrier is highest – largest resistance to be overcome
- At the highest velocity (nose), barrier is lowest – smallest resistance to a rapidly growing plate

F.G. Caballero et al, Acta Mater. 59 (2011) 6117 - 6123

OF TECHNOLOGY

Evaluation of the barrier from experiments on Fe-C

The function $: B_m(v,T)$

Try to fit a function $: B_m(v,T)$

ROYAL INSTITUTE OF TECHNOLOGY

••hero-m_{2i}

4. Conclusions

- It is possible to represent the data on WS and bainitic ferrite with Zener-Hillert type of model including a thermodynamic barrier.
- We need to express the barrier as a function of growth rate, temperature and alloy content.
- Interfacial energy needs to be assessed!

