
Virtual Cyclic Phase Transformation Dilatometer ExperimentsVirtual Cyclic Phase Transformation Dilatometer Experiments

for Fe-Mn-C by means of Phase Field Simulations
M. Apel, G.Laschet, B.Böttger



Motivation

E
xp

er
im

en
ta

l d
at

a 
by

 H
. D

ic
ke

rt
, I

E
H

K

technical steel grade: S355

Simulation input:

� databases TCFE5, MOB2

� cooling rate: 0.5K/s

� high interface mobility for diffusion 

limited growth

0.15C

1.35Mn

0.07Cr

0.02P

0.009S

0.36Si

Phase field model for the computation of dilatometer curves: Apel, Benke, Steinbach, Comp. Mat. Sci. 2009

powered by technology

� interface mobility and nucleation undercooling needs calibration
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Motivation
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+ more papers and contributions this meeting !!!



Outline

� Introduction

� Phase field simulations (3D)

� initial microstructure

� cyclic transformation
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� Driving force models – detailed discussion (1D)

� Conclusion



Introduction

transformation γ → α

needs energy dissipation !

� ∆Gdiffusion

� ∆Ginterface motion

� …
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Introduction

Energy dissipation takes time: 

hysteresis is a natural consequence 

of kinetic processes

Which way does the transformation
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choose?



Introduction

Energy dissipation takes time: 

hysteresis is a natural consequence 

of kinetic processes

the reaction path reveals the energy
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dissipation



Introduction

interface velocity = interface mobility × driving force:                                               

v = µ · ∆∆∆∆Glocal (not necessarily a linear relationship)

v can be measure precisely, but: 

How to decompose v into µ and ∆G?

� sharp interface models: LE, PE, mixed mode, …

� diffuse interface models: PF, MPF, TEP, …
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� diffuse interface models: PF, MPF, TEP, …

Estimate from thin interface assymptotics: µ >10-3 cm4/Js for diffusion controlled limit
Consistent with experimental findings: µ ≈ 10-5 cm4/Js „mixed mode“ transformation

∆Gtot = v/µ + ∆Gdiffusion + … 



Diffuse interface discription of a phase field model

Gibbs-Thomson condition

Stefan Condition

vcmTT llm βκΓ −−−=

lnlsnsnl )c(D)c(Dv)k1(c ∂−∂=−

PFM: Order parameter for state of phase

φ:=0 solid      φ :=1 liquid    0< φ<1 interface
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Aim: recover BC for sharp interface e.g. by matching assymptotics

( )[ ],...c,T,,F
dt

d µφφ
δφ
δφτ ∇=

Free energy relaxes into minimum



Multiphase field model (MPF) 
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The Multiphase-Field Model: Extension towards Elast icity
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Steinbach, Apel: Physica D 54 (2006)
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Virtual phase field experiment

t=0s, T=895°C 

����
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300s

30 austenite grains

〈rγ〉 = 8.1µm

domain size: 55µm × 35µm × 35µm



Thermodynamic equilibrium

� Database TCFE6 (Thermocal AB)

Fe balance

C [wt %] 0.023

Mn [wt %] 0.17

Si [wt %] 0.009
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Interface mobility (temperature dependent)

� µ(γ/γ) set identical to µ(γ/α)

Estimate for kinetic undercooling:

∆Gkin = v/µ = 10µm/100s / 10-5cm4J-1s-1

= 1 Jcm-3

energy dissipation by interface „friction“ 
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# γ/α:  Mecozzi et al., Comp. Mat. Sci. 50 (2011) p.1846
## α/α:  Rudnitzki et al

energy dissipation by interface „friction“ 



Interfacial energy (temperature dependent)

� µ(γ/γ) set identical to µ(γ/α)
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# „dislocation“ based model



Diffusion coefficients

� Mobility data from MOBFE2 (Thermocalc)

approx. diffusion length

for 150s @ 880°C

bcc fcc

C 250µm 25µm

Mn 1µm 0.1µm
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Mn 1µm 0.1µm

Si 1µm 0.1µm



Virtual phase field experiment

t=0s, T=895°C 

����
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300s

30 austenite grains

〈rγ〉 = 8.1µm

domain size: 55µm × 35µm × 35µm

����



Initial grain structure (895°C → 860°C)

t=0s, T=895°C t=30s, T=860°C t=150s, T=860°C 

powered by technology

30 austenite grains

〈rγ〉 = 8.1µm

30 austenite + 44 ferrite grains

〈rγ〉 = 4.7µm

〈rα〉 = 6.7µm

〈r〉 = 6.1µm

ferrite nucleation at quadrupel points,

fix orientation relationship



Initial grain structure: orientation

t=0s, T=895°C t=150s, T=860°C 
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Initial cooling into 2-phase region
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Equilibrium phase fraction reached



Initial cooling into 2-phase region: phase fraction over time
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Virtual phase field experiment

t=150s, T=860°C 
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300s
����

30 austenite + 44 ferrite grains

〈rγ〉 = 4.7µm

〈rα〉 = 6.7µm

〈r〉 = 6.1µm



Cyclic transformation

austenite

ferrite
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I-cycle: MPF model
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Multiphase field model (MPF): computation of length changes

● Elastic free energy
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Steinbach, Apel: Physica D 54 (2006)

( )     C0 * −ε−εφ∇=σ∇= αααα
α
∑Mechanical equilibrium ( )0

th TT −εα

� here we do not consider the contribution to the driving force



Mechanical material properties

� temperature and composition dependent literature data 

Fe fcc (@950°C) bcc (@850°C)

C11 [GPa] 188.3# 133.9#

C12[GPa] 162.6# 77.3#

C44[GPa] 95.00# 67.7#

powered by technology

molar volume [cm3] 7.2589## 7.3495##

thermal expansion coeff.## 2.192·10-5 1.285·10-5

# Ghosh & Olson, Acta Mat. 50 (2002) p. 2655 and Rayne & Chandrasekhar, Phys. Rev 122 (1961) p.1714 
## Cho et al. Met.& Mater. Trans. A, vol 42A (2011), p. 2094



Virtual dilatometer signal

� Calculating the volume expansion of the 2-phase microstructure during phase transformation

εyy

εzz
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εxx

σxx = σyy= σzz = 0

Boundary conditions: 

free expansion but preserving a cubic shape

� Uniform expansions � isotropic behavior of the 

polycrystalline cube



The Multiphase-Field Model: Extension towards Elast icity
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I-cycle: MPF model

∆l/l = fα·αα + fγ·αγ + fα · ∆mol
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linear relationship between phase fraction and dilatation is reasonable



I-cycle: MPF model

∆l/l = fα·αα + fγ·αγ + fα · ∆mol

powered by technology

minor differences caused by the different mechanical properties of austenite and ferrite



I-cycle: MPF model
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No stagnant stage ???



I-cycle: alternative driving force models

� MPF with LENP or Petd approximation
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Grain structure at the end of each cycle
MPF model

MPF PE model

final (4 cycles)intermediate
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MPF LENP model



I-cycle: driving force model MPF (standard)

� 3D simulation: length change computed from phase fraction
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I-cycle: driving force model MPF (standard + LENP)

� 3D simulation: length change computed from phase fraction
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I-cycle: driving force model MPF (standard + LENP + PE)

� 3D simulation: length change computed from phase fraction
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� standard MPF and PE show similar behavior



Element composition in the diffuse interface

Wheeler-Boettinger-McFadden type models Multiphase field models
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Continuous concentration split into partial concentrations

natural choice when η is on the atomistic 

scale

allows to separate bulk and interfacial 

properties and thus mesoscopic simulations 

� diffuse interface region considered as “mixture” of bulk phases

� addition degree of freedom needs to be fixed



Phase-field and thermodynamics: quasi-equilibrium
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Diffuse interface „artifacts“

processes scaling with interface width

� interface kinetics

� solute trapping

� surface diffusion

� surface stretching

measures against unwanted artifacts:

thin interface limit, anti trapping current, …
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physical interface  ~ d
0
[nm]

numerical width in p.f. model ~ η [µm] 

condition for “quantitative” phase field: η << diffusion length lD

OK for C, but necessarily violated for substitiutional elements like Mn

thin interface limit, anti trapping current, …

(e.g. A. Karma, Phys Rev. Lett 87, 115701 (2001))



Element profiles within the diffuse interface: standard MPF

� „solute trapping“ leads to a (partial) 
overrunning of the pile-up

� interface kinetics / driving force depends 
on the solute distribution within the 
interface

� Due to the small diffusion length (“spike”) the solutal pile up is completely within the diffuse interface
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� calibration of the interface mobility would 
avoid the problem
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� interface kinetics / driving force depends 
on the solute distribution within the 
interface

� Due to the small diffusion length (“spike”) the solutal pile up is completely within the diffuse interface
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� calibration of the interface mobility would 
avoid the problem



Element profiles within the diffuse interface: PE approximation

� composition of substitutional element taken from the “upstream” side 
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Element profiles within the diffuse interface: PE approximation

� composition of substitutional element taken from the “downstream” side 
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v



1D simulation: model comparison
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� Can we exclude standard MPF (and PE-models) from the absence of the stagnant stage?



1D simulation: model comparison
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� Maybe not if the interface mobility is significantly reduced (mixed mode)

(A detailed investigation of the shape may allow a decision) 



Conclusion

� Transformation according standard MPF predictions behaves similar to PE

� The stagnant stage can be observed for a MPF-LENP model

� Standard MPF can show a stagnant stage for mixed mode conditions

� Cycles show „aging“ cause by a Mn „wall“ 
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Quantitative comparison betwee sharp interface, phase field and experiments should be the

next step
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The Mn spike

� Virtual experiment: prepare a Mn spike (10min holding at 872.5°C), cycling between 860°C and 885°C.
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Interface mobility (temperature dependent)

� µ(γ/γ) set identical to µ(γ/α)
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# γ/α:  Mecozzi et al., Comp. Mat. Sci. 50 (2011) p.1846
## α/α:  Rudnitzki et al



bulk free energies 
from 

thermodynamic 
databases

Coupling to solute diffusion: The multiphase-field model
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for all phases ββββ, αααα and 
components k

or                   in stoichiometric 
phases

constck =α
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Wheeler-Boettinger-McFadden type models
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η
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� Energetic contribution of the interface scales with  its (numerical) 
thickness

spurious effects for simulations on mesoscopic leng th scale
� Problems in handling stoichometric phases, free ene rgy for the 

interface diverges 



Multiphase field model: PE approximation

� Phase field, LENP, PEpf, PEtd

powered by technology


