

Study of ferrite growth in Fe-C-Cr alloys by decarburisation

Armand Béché, Hatem Zurob

Introduction:

> Microstructure knowledge allows providing good properties in steel.

 \succ Decarburisation is a very accurate method to measure ferrite growth in low carbon steels.

Study two systems: Fe-0.57%C (carbon diffusion coefficient) Fe-2%Cr-0.5%C (solute drag quantification)

- Plan: I. Theory of decarburisationII. Experimental procedures and optimisations
 - III. Decarburisation of Fe-Cr-C

I. Theory of decarburisation:

Equation of Decarburisation :

$$C + \frac{1}{2}O_2 \leftrightarrow CO$$

But oxide formation is possible:

$$x M + \frac{y}{2}O_2 \leftrightarrow M_xO_y$$

Hydrogen bubbling in water allow knowing the oxygen partial pressure:

$$H_2 + \frac{1}{2}O_2 \leftrightarrow H_2O \implies P_{O_2} = \frac{P_{H_2O}}{P_{H_2}}e^{\frac{2\Delta G_{H_2O}}{RT}}$$

And the existence of eventual oxide:

$$P_{O_2 \max} = e^{\frac{2}{y} \frac{\Delta G_{M_x O_y}}{RT}}$$

> Alloys composition :

Need of wide range of temperature \square Large zone of coexistence of α and γ

Phase diagram gives the optimal composition in carbon:

≻ Calculation of the carbon profile:

Decarburisation is only mastered by diffusion law.

To numerically solve the problem, diffusion coefficient in both α and γ and concentration in carbon at the interface have to be know.

Diffusion coefficients :

Agren and al. found equation to model the carbon diffusion in ferrite and austenite.

In ferrite:

$$D_{\alpha} = 2.10^{-6} e^{\left(\frac{-10115}{T}\right)} e^{\left(0.58981 + \frac{2}{\pi} \arctan\left(14.985 - \frac{15309}{T}\right)\right)}$$

In austenite:

$$D_{\gamma} = 4.53.10^{-7} \left(1 + \frac{X_{c\gamma}}{1 - X_{c\gamma}} \frac{8339.9}{T} \left(1 - \frac{X_{c\gamma}}{1 - X_{c\gamma}} \right) \right) e^{-\left(\frac{1}{T} - 2.221.10^{-4}\right) \left(17767 - 26436 \frac{X_{c\gamma}}{1 - X_{c\gamma}} \right)}$$

> Concentration of carbon at the interface:

Three different predictive models exist depending the interface velocity: LEP, LENP and PE.

LEP (Local equilibrium partitioning):

II. Experimental procedures and optimisations:

➢ Furnace organisation:

> Optimisations:

Iron plating by electrodeposition for samples presenting oxide formation. Average thickness is taken around 5 μ m to not disturb carbon diffusion.

Water temperature and hydrogen flux have been optimized using Fe-2%Cr-C samples:

						Layer	Standard
	Furnace		Water	Wet H ₂	Dry H ₂	thickness	deviation
	temperature	Time	temperature	$(cm^3.min^{-1})$	$(cm^3.min^{-1})$	(µm)	(µm)
1	806°C	64 min	R-T	50	250		
2	806°C	64 min	0°C	50		148,95	3,27
3	806°C	64 min	R-T	50		159,59	0,67
4	806°C	64 min	R-T	17		143,86	0,81

Diffusion coefficient correction using Fe-0.56%C alloy:

Magnetic transition appears in the range of temperature studied.

Experiments required to correct Agren's data in that zone.

Fe-C follow exactly the LENP model.

For the temperature above 806°C, a multiplicative factor of 0.8 is needed to perfectly match the data.

McMaster University

III. Decarburisation of Fe-Cr-C:

≻ Composition chosen at 2 wt% Cr and 0.57 wt% C.

 \succ For T=825°C:

12.2 J/mol of dissipation

 \succ For T=806°C:

27.2 J/mol of dissipation

 \succ For T=775°C:

36.5 J/mol of dissipation

Augmentation of the dissipation with the temperature decrease.

➢ Solute drag model:

Solute drag slow down the boundary motion:

Modeling proposed by Cahn et al.:

$$P_{SD} = 1.10^{-9} \frac{(kT)^2}{D_{Cr}E_0} \left(\sinh \frac{E_0}{kT} - \frac{E_0}{kT} \right) C \nu \quad \text{with} \quad D_{Cr} = ae^{\left(\frac{-Q}{RT}\right)}$$

> Identification to solute drag model:

850°C result can not be use.

Three dissipations for three unknowns: E_0 , Q and a.

$$P_{SD} = 1.10^{-9} \frac{(kT)^2}{D_{Cr}E_0} \left(\sinh \frac{E_0}{kT} - \frac{E_0}{kT} \right) C \nu \quad \text{with} \quad D_{Cr} = ae^{\left(\frac{-Q}{RT}\right)}$$

Magnetic transition in the range of temperature hampers the solution obtainment.

From literature, $E_0 = 15 \text{ kJ}$ $\square D_{Cr}$ can be approximate

	$D_{Cr} experimental (10^{-18} m^2.s^{-1})$	$D_{Cr} \text{ in ferrite} $ (10 ⁻¹⁸ m ² .s ⁻¹)	$D_{Cr} \text{ in austenite} $ (10 ⁻¹⁸ m ² .s ⁻¹)
775°C	11.7	220 to 2500	0.88 to 3.1
806°C	13.7	470 to 5800	2.2 to 8.0
825°C	32.5	750 to 9400	0.14 to 3.8

Conclusion:

Verification of carbon diffusion coefficient in austenite

Correction needed above the magnetic transition temperature

Decarburisation of Fe-Cr-C alloy

Presence of solute drag effect

Not enough data to get the solute drag force

> Measurement of the chromium diffusion coefficient across the $\alpha - \gamma$ boundary.

Value comprises in between chromium diffusion coefficient in α and γ

> Future work: more decarburisation temperatures ?