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The cyclic partial transformation concept
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The cyclic partial phase transformation 
concept

The advantages :

1. Ferrite nucleation effects can be suppressed

2. The interface mobility for both the austenite to ferrite 
and ferrite to austenite transformation can be 
determined. 

3. Development of element partitioning can be followed
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Results to be presented 

1- cyclic transformation curves at 10 K/min for a Fe-0.17Mn-0.02C alloy

2- comparison with PE and LE calculations

3- effects of heating and cooling rate on the stagnant stage

4- calculated behavior of ternary Fe-X-0.02 C alloys and quaternary 
alloys Fe-MN-C-X for X = Mn, Ni, Cu, Si,Co

5- creating experimental indirect evidence for the Mn spike at the 
moving interface
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The cyclic phase transformations 
in Fe-Mn-C alloys

Chen, Appolaire, Van der Zwaag, Acta Materialia 59 (2011) 6751-6760
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Immediate (type I)
Cyclic Phase transformations for Fe-Mn-C
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Experimental results 
for a type I experiment
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Cycling in the stagnant stage

885 895
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Holding (type H)
Cyclic phase transformations for Fe-Mn-C
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Experimental results 
for a type H experiment

860 885
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Modelling 1

Local equilibrium model for Fe-C-M (LE-NP and LE-P)
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Diffusion equations:

Boundary conditions:

 i i i iJ J v X X     Mass balance at the interface:

In the LE model, the carbon and the substitutional element M partitionings 
according to local equilibrium assumptions, which means the chemical 
potential of carbon and M across the interface should be constant:

i i
   i=M or C

Φ= γ or α and i=M or C

i=M or C
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Modelling the cyclic transformations
Paraequilibrium model for Fe-C-M
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Diffusion equations:

Boundary conditions:

 i i i iJ J v X X     Mass balance at the interface:

In the paraequilibrium model, the substitutional element M does not redistribute and the 
chemical potential of C is a constant across the interface. The chemical potential equations can 
be described as:

C C
  

   Fe
M M Fe Fe

M

X
X

         

Φ= γ or α and i= C

i= C
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Modelling results for type I experiment
for Local Equilibrium and Paraequilibrium

Experimental
results

860 885
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Modelling results for type H experiment

Experimental
results

860 885
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Concentration profiles 
during 1st heating cycle

Carbon profiles Mn profiles
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Concentration profiles
for the 1st cooling stage

Carbon profile Mn profile

due to 
1st cycledue to 

2nd cycle
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The stagnant stage in more detail

Carbon profile Mn profile
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The effect of cooling rate and heating rate on 
the stagnant stage and inverse 

transformation stage

Chen, Goune, Van der Zwaag, Compu Mater Sci 55(2012)34
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Simulation

115 different combinations of cooling and heating rate have been simulated 
by local equilibrium model.

The range of cooling and heating rate is from 5K/min to 1500K/min

The studied alloy is Fe-0.2Mn-0.02C
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Varying heating rate

Equilibrium interface position at 885C is 11µm

Fe-0.2Mn-0.02CHeating rate fixed at 10 K/min
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Varying cooling rate

Equilibrium interface position at 885C is 11µm

Fe-0.2Mn-0.02CCooling rate fixed at 10 K/min
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Definitions

Length of stagnant stage:

4 5C CT T T  
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The stagnant stage

Fe-0.2Mn-0.02C

Length of stagnant stage
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The calculated effect of substitutional 
element in Fe-X-C alloys 

Chen, Goune, Van der Zwaag, Compu Mater Sci 55(2012)34
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Fe-Mn-C
T2-T1=25K  &  A3-T2=5K Heating & cooling rate fixed at 10 K/min
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Fe-Ni-C
T2-T1=25K     &   A3-T2=5K
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Fe-Cu-C
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Fe-Co-C
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The effect of X concentration 
on the stagnant stage for Fe-0.02C- X
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Fe-Mn-Ni-C  quarternary system
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Fe-Mn-Si-C
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Fe-Mn-Co-C
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Effect of X concentration on the stagnant stage for Fe-0.2Mn-0.02C-X
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Creating evidence for the existence of the 
Mn –spike after cyclic transformations

(spatial stagnant stage)

Chen, Van der Zwaag, Phil Mag Letters, 92(2012)86
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Spike is really there???

Mn profile
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Experiments
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Experiments
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Experiments
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Mn profiles as calculated by LE model
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The effect of Mn concentration on 
local stagnant stage

Fe-0.023C-0.17Mn Fe-0.1C-0.49Mn
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Addition of Si and a higher Mn %
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Temperature or position dependent??
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Conclusions

1. Substitutional element partitioning is responsible for the stagnant stage

2. The degree of partitioning depends on chemical element, heating rate 
and cooling rate 

3. The effect of chemical elements on stagnant stage seems additive

4. The partitioning related to the stagnant stage can affect the kinetics of 
subsequent transformations (provided the interface moves in the same 
direction)


