The stagnant phase during cyclic phase α-γ transformations

Hao Chen, Sybrand van der Zwaag

Novel Aerospace Materials group Faculty of Aerospace Engineering, Delft University of Technology

In collaboration with **Mohamed Goune,** Arcelor-Mittal, France

October 29, 2013

The cyclic partial transformation concept

Chen and Van der Zwaag, Compu Mater Sci 49 (2010) 801-813

The cyclic partial phase transformation concept

The advantages :

- 1. Ferrite nucleation effects can be suppressed
- 2. The interface mobility for both the austenite to ferrite and ferrite to austenite transformation can be determined.
- 3. Development of element partitioning can be followed

Results to be presented

- 1- cyclic transformation curves at 10 K/min for a Fe-0.17Mn-0.02C alloy
- 2- comparison with PE and LE calculations
- 3- effects of heating and cooling rate on the stagnant stage
- 4- calculated behavior of ternary Fe-X-0.02 C alloys and quaternary alloys Fe-MN-C-X for X = Mn, Ni, Cu, Si,Co
- 5- creating experimental indirect evidence for the Mn spike at the moving interface

The cyclic phase transformations in Fe-Mn-C alloys

October 29, 2013

Chen, Appolaire, Van der Zwaag, Acta Materialia 59 (2011) 6751-6760

Immediate (type I) Cyclic Phase transformations for Fe-Mn-C

Time

Experimental results for a type I experiment Fe-0.17Mn-0.023C (wt. %) alloy

Chen, Appolaire, Van der Zwaag, Acta Materialia 59 (2011) 6751-6760

Cycling in the stagnant stage

8

Holding (type H) **Cyclic phase transformations for Fe-Mn-C**

Experimental results for a type H experiment

Modelling 1

Local equilibrium model for Fe-C-M (LE-NP and LE-P)

In the LE model, the carbon and the substitutional element M partitionings according to local equilibrium assumptions, which means the chemical potential of carbon and M across the interface should be constant:

$$\mu_i^{\gamma} = \mu_i^{\alpha}$$
 i=M or C

Diffusion equations:

$$\frac{\partial X_{i}^{\phi}(r,t)}{\partial t} = \frac{1}{r^{k-1}} \frac{\partial}{\partial r} \left(r^{k-1} D_{i}^{\phi} \left(X_{i}^{\phi}(r,t) \right) \frac{\partial X_{i}^{\phi}(r,t)}{\partial r} \right)$$
Boundary conditions:

$$\frac{\partial X_{i}^{\phi}(r,t)}{\partial r} \bigg|_{\substack{r=0\\r=L}} = 0 \qquad \Phi = \gamma \text{ or } \alpha \text{ and } i = M \text{ or } C$$
Mass balance at the interface:

$$J_{i}^{\gamma} - J_{i}^{\alpha} = v \left(X_{i}^{\gamma} - X_{i}^{\alpha} \right) \qquad i = M \text{ or } C$$
October 29, 2013

Modelling the cyclic transformations

Paraequilibrium model for Fe-C-M

In the paraequilibrium model, the substitutional element M does not redistribute and the chemical potential of C is a constant across the interface. The chemical potential equations can be described as:

 $\mu_{C}^{\gamma} = \mu_{C}^{\alpha}$

$$\left(\mu_{M}^{\gamma}-\mu_{M}^{\alpha}\right) = -\frac{X_{Fe}}{X_{M}}\left(\mu_{Fe}^{\gamma}-\mu_{Fe}^{\alpha}\right)$$
Diffusion equations:
$$\frac{\partial X_{i}^{\phi}(r,t)}{\partial t} = \frac{1}{r^{k-1}}\frac{\partial}{\partial r}\left(r^{k-1}D_{i}^{\phi}\left(X_{i}^{\phi}(r,t)\right)\frac{\partial X_{i}^{\phi}(r,t)}{\partial r}\right)$$
Boundary conditions:
$$\left.\frac{\partial X_{i}^{\phi}(r,t)}{\partial r}\right|_{\substack{r=0\\r=L}} = 0 \qquad \Phi = \gamma \text{ or } \alpha \text{ and } i = C$$

Mass balance at the interface: $J_i^{\gamma} - J_i^{\alpha} = v \left(X_i^{\gamma} - X_i^{\alpha} \right)$

i = C

Modelling results for type I experiment for Local Equilibrium and Paraequilibrium

Modelling results for type H experiment

Concentration profiles during 1st heating cycle

Concentration profiles for the 1st cooling stage

The stagnant stage in more detail

October 29, 2013

The effect of cooling rate and heating rate on the stagnant stage and inverse transformation stage

October 29, 2013

Chen, Goune, Van der Zwaag, Compu Mater Sci 55(2012)34

Simulation

115 different combinations of cooling and heating rate have been simulated by local equilibrium model.

The range of cooling and heating rate is from 5K/min to 1500K/min

The studied alloy is Fe-0.2Mn-0.02C

Varying heating rate

Equilibrium interface position at 885C is 11µm

October 29, 2013

Fe-0.2Mn-0.02C

Varying cooling rate

Cooling rate fixed at 10 K/min

Fe-0.2Mn-0.02C

Equilibrium interface position at 885C is 11µm

October 29, 2013

Definitions

Length of stagnant stage:

$$\Delta T = T_{C_4} - T_{C_5}$$

The stagnant stage

The calculated effect of substitutional element in Fe-X-C alloys

October 29, 2013

Chen, Goune, Van der Zwaag, Compu Mater Sci 55(2012)34

Fe-Mn-C

T2-T1=25K & A3-T2=5K

Heating & cooling rate fixed at 10 K/min

October 29, 2013

T₂-T₁=25K & A₃-T₂=5K

October 29, 2013

The effect of X concentration on the stagnant stage for Fe-0.02C- X

Fe-Mn-Ni-C quarternary system

Effect of X concentration on the stagnant stage for Fe-0.2Mn-0.02C-X

Creating evidence for the existence of the Mn –spike after cyclic transformations (spatial stagnant stage)

October 29, 2013

Chen, Van der Zwaag, Phil Mag Letters, 92(2012)86

Spike is really there???

Mn profiles as calculated by LE model

The effect of Mn concentration on local stagnant stage

Fe-0.023C-0.17Mn

Fe-0.1C-0.49Mn

TUDelft

Addition of Si and a higher Mn %

October 29, 2013

Temperature or position dependent??

Conclusions

- 1. Substitutional element partitioning is responsible for the stagnant stage
- 2. The degree of partitioning depends on chemical element, heating rate and cooling rate
- 3. The effect of chemical elements on stagnant stage seems additive
- 4. The partitioning related to the stagnant stage can affect the kinetics of subsequent transformations (provided the interface moves in the same direction)

