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Outline

• Definitions
• Background and Introduction
• Questions and Outline
• Experimental Procedures
• Results and Discussion

• Microstructural Evolution
• Analytical Results

• DICTRA vs. Experiment
• Phase Field Simulations

• Conclusions and Future Work
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DCM Vs. ICM Growth

For a fixed thermodynamic condition(s)…
DCM – Diffusion Controlled Mode

The interface mobility is effectively infinitely fast, and the 
rate of diffusion controls the progress of the 
transformation.

ICM – Interface Controlled Mode
The diffusion mobility is effectively infinitely fast, and the 

interface mobility controls the rate of transformation.
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Background

Controlled Thermomechanical Processing (CTMP)*

• Measured and simulated overall transformation in medium 
carbon alloy steels as a function of prior austenite grain 
size (PAGS).

* Ref. Damm & Lusk, 2001 – DOE Contract DE-FC07-99ID13819
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Background Continued
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Simple extrapolations do not accurately describe what is happening



Advanced 
Steel 

Processing
and 

Products 
Research 

Center

1040 Steel – 670°C Isothermal Hold

10 μm, 60% F, 40% P                               250 μm, 24% F, 76% P     

• Coarser prior austenite grain exhibits thicker ferrite half thickness
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Relevance

Industrial Relevance
• Microstructures lead to properties 
• Prior Austenite Grain Size…

• Can be manipulated via heat treatment (i.e. normalizing)
• Can be controlled with thermomechanical processing 

and/or microalloying
• Is often left uncontrolled (i.e. forging, or tube & bar rolling)

Scientific Relevance
• Despite decades of ferrite growth research, we 

continue to lack a quantitatively accurate, 
physically based description for ferrite growth.  This 
work sheds new light on aspects that must be 
incorporated.
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Thesis Questions and Outline

This work asks the following questions;
1. How does prior austenite grain size affect ferrite growth 

rate and final ferrite (1/2) thickness in ferrite + pearlite 
microstructures?    

2. What is the effect of grain size on the establishment of 
conditions for pearlite nucleation and growth?    

In order to address these questions the following tasks 
were pursued.

1. Generation of simple binary and ternary alloys for 
laboratory investigation,    

2. Evaluation and observations of the ferrite growth rate and 
final ferrite (1/2) thickness using a range of experimental 
techniques, and    

3. Application or generation of physically based mesoscale 
analytical models that predict the above experimental 
observations.
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Experimental Alloy Preparation

Alloy C Mn Cr Al O(ppm) N(ppm)
Fe-0.1C 0.14 0.01 0.01 0.009 78 8
Fe-0.3C 0.33 0.01 0.01 0.002 28 8
Fe-0.3C-1.0Mn 0.33 0.94 0.01 0.003 36 7
Fe-0.3C-3.0Mn 0.34 2.93 0.01 0.004 30 8
Fe-0.3C-3.0Cr 0.34 0.01 3.03 0.006 27 7
Nominal Others - Si, Ni, Mo, Cu, S = 0.01; Sn, V, Ti = 0.001, Co, P, W = 0.002

• 45 kg Vacuum Induction Melted heats
• Electrolytic iron feed
• Killed with carbon (to avoid Al, Si)
• Forged and rolled ~ 90% R.A.
• Ternaries homogenized at 1200oC – 36 hours

Fe-0.1C – Transforms too fast and with too much ferrite
Fe-0.3C-3X – Transforms too slow and with nil ferrite
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Dilatometry Samples
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Thermal Cycles
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Results and Discussion

Microstructural Evolution
Modeling Vs. Experiment
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Grain Size Establishment

850 900 950 1000 1050 1100 1150 1200 1250 1300

100

850 900 950 1000 1050 1100 1150 1200 1250 1300

100

G
ra

in
 S

iz
e 

(μ
m

)

Hold Temp. (oC, 300 sec.)

 Fe-0.1C
 Fe-0.3C
 Fe-0.3C-1.0Mn
 Fe-0.3C-3.0Mn
 Fe-0.3C-3.0Cr

300300

3030

‘Fine’ ASTM 6.5 35-40 μm

‘Medium’ ASTM 4 85-90 μm

‘Coarse’ ASTM 2 170-180 μm

Nominal PAGS Diameters
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Advanced 
Steel 

Processing
and 

Products 
Research 

Center

Fe-0.3C, PAGS Vs. φα
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Fe-0.3C-1.0Mn, PAGS Vs. φα
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Fe-0.3C-1.0Mn, CCT at 0.1°C/s

Fine PAGS

Coarse PAGS

Medium PAGS

Fe-0.3C-1.0Mn 
CCT Trends

• PAGS , φα
• PAGS , t1/2
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Fe-0.3C-1.0Mn, IT at 675°C

Fine PAGS

Coarse PAGS

Medium PAGS

Fe-0.3C-1.0Mn 
IT Trends

• PAGS , φα
• PAGS , t1/2
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Transformation Reaction Path
Coarse Grains                      Fine Grains

t0

> t 0t1

carbon leak

carbon leak

carbon leak

carbon leak carbon leak
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What Has Been Established?

PAGS impacts the volume of austenite available to 
accept carbon.

A small volume of austenite reduces the steepness 
of the carbon profile and diminishes the driving 
force. 

At sufficiently small grain sizes and with certain IT 
or CCT conditions, soft impingement can further 
impact ferrite growth rate.

Diffusion Control Mode (DCM) simulations often 
under predict the ferrite t1/2 when compared to 
experiment.

What is Next? –
Comparing Experimental Growth Rate to 
Modeled Growth Rate

α
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Provides volume fraction (φi ) at each time and 
temperature from dilation data

Lattice parameters
• aγ

 

= F[T, C]
• aα

 

= F[T]
• aFe3C , bFe3C , cFe3C = F[T]
• am , cm = F[T, C]

Carbon
• During ferrite formation austenite is enriched
• Pearlite, bainite and martensite are treated as neutral 

(i.e. the carbon in austenite after ferrite stops defines 
the carbon/cementite in the next phase/constituent)

• Superior approach compared to the ‘lever rule’

Dilatometry Data Conversion
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Interface Position and Velocity

Approach
• Convert dilation data to 

ferrite phase fraction 
based on temperature, 
carbon and phase 
dependant lattice 
parameters

• Convert ferrite phase 
fraction data to interface 
position and velocity 
assuming spherical 
grains

α
γ
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Fe-0.3C, DCM Vs. Experiment

Fe-0.3C IT summary
At 700°C, Widmenstätten ferrite formed for coarse grains
At 650°C, Hardenability problems exacerbated

Fe-0.3C CCT summary
When Widmenstätten was not present, DCM simulations provided reasonable final 

ferrite 1/2 thickness
For both IT and CCT, DCM over predicted early and under predicted later growth rate.
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Fe-0.3C Experimental Vs. DCM Ferrite tα

Isothermal Hold (°C)

Fine Grain Medium Grain Coarse Grain

Sim. Exp. Sim. Exp. Sim. Exp

700 2.7 5.3 N-R N-R Wid. Wid.

675 Unk. 2.2 Unk. 2.9 1.2 3.6

650 Unk. 1.0 Unk. 1.0 Unk. 1.3

Cooling Rate (°C/s)
Fine Grain Medium Grain Coarse Grain

Sim. Exp. Sim. Exp. Sim. Exp.
0.05 5.0 5.0 N-R N-R 22.2 25
0.1 N-R N-R 12.3 12.8 Wid. Wid.
0.5 5.1 4.7 9.4 10.4 N-R N-R
1 5.2 4.2 7.8 8.0 N-R N-R

Values in μm, N-R = Not Run, Wid. = Widmenstätten, Unk. = Unknown

1/2
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Fe-0.3C-1.0Mn, DCM Vs. Experiment
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Fine grains resulted in closer predictions while medium and coarse grains were again 
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Fe-0.3C-1.0Mn CCT Summary

DCM simulations were closest for fine grains and provided reasonable final ferrite 1/2 
thickness

For both IT and CCT, DCM over predicted early and under predicted later growth rate.
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Fe-0.3C-1.0Mn Experimental Vs. DCM tα

Isothermal Hold (°C)

Fine Grain Medium Grain Coarse Grain

Sim. Exp. Sim. Exp. Sim. Exp.

675 3.6 3.6 3.4 5.3 3.4 7.8

650 1.3 1.4 1.3 2.1 1.3 2.5

625 0.8 0.4 0.9 0.7 1 1.2

Cooling Rate (°C/s)

Fine Grain Medium Grain Coarse Grain

Sim. Exp. Sim. Exp. Sim. Exp.

0.05 4.6 3.6 9.0 8.4 12.8 15.7

0.1 N-R 3.5 N-R 7.4 N-R 13.0

0.3 4.3 3.3 N-R N-R 7.0 10.2

1 N-R N-R N-R 3.1 N-R 5.7

Values in μm, N-R = Not Run

1/2
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What Else Has Been Established?

DCM, the supposed upper bound in growth rate over 
predicts initial growth, but more importantly, under 
predicts later growth.

At all IT or CCT conditions studied, PAGS impacts 
growth rate, but only minimally at PAGS > 175μm.

At sufficiently small PAGS, and with certain alloy and 
transformation conditions, DCM is nearly accurate 
because of soft impingement.  (i.e. when the driving 
force is nearly consumed).

What is Next? –
Modifying initial and later growth rate with the 
Phase Field Method



Advanced 
Steel 

Processing
and 

Products 
Research 

Center

Phase Field Method Governing Equations

Conserved Fields (composition)

Non-Conserved Fields (phases)
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The Phase Field Method

The derivation of the phase field equations is consistent 
with thermodynamic and kinetic principles, and 
incorporates the apparent interface moblility.

The derivation results in coupled partial differential 
equations (PDE’s).  

Coupling occurs due to thermodynamic stability as a 
functions of local chemistry for the non-conserved 
(phase) field, and the thermodynamic driving force 
for diffusion for the conserved (composition) field.

Solve coupled PDE’s for conserved and non-conserved 
field variables.

Additional terms are often added to account for 
anisotropic interfacial energy, grain orientation, etc. 
allowing for realistic simulations of 3-D morphologies

Phase Field Models are Computationally Expensive!
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Phase Field Modeling Results
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A phase field model was built based on the construct of Loginova et al. using 
FiPy (NIST general PDE tool), and the Loginova et al. 1-D test code was 
also obtained and used to run simulations.

As constructed these codes essentially give the same result as DICTRA.

Fe-0.3C, IT at 675°C
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Apparent Phase Field Mobility
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Hillert proposal based on α/α

 

coarsening, others based on α

 

growth 
in γ.

PFM results with a*MHillert value show with the Hillert value the PFM 
reduces to DCM.  Recent work by Hoagland et. Al. at KTH 
revised the Hillert Mobility down ~ 5 orders of magnitude
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Diffusion of Carbon in Austenite

Current work is for temperatures of 
625-725°C (900-1000°K) and 
carbon contents between 0.01 and 
0.09 atomic fraction.
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PFM Results with Higher Dc
γ

Fe-0.3C, IT at 675°C
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Experimental Results
 Coarse PAGS

• Increasing the diffusion of carbon in austenite by a factor of ~ 3 or more 
in order to increase the rate of transformation to approximate the 
experimentally measured rate.
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Conclusions

For IT conditions the final ferrite ½ thickness decreases as 
the PAGS is reduced due to the reduced volume of 
austenite available to accept carbon.

For CCT conditions the PAGS also impacts carbon 
accumulation, but for fine grains the occurrence of soft 
impingement and ‘filling’ reduces the strength of the 
PAGS on the final ferrite ½ thickness.

Generally accepted Dc functions under predict the carbon 
diffusivity in austenite at temperatures relevant to ferrite 
growth.

DCM over predicts early ferrite growth and under predicts 
later ferrite growth.

Phase Field Modeling can be used to allow early growth to 
proceed via ICM, and trend toward DCM as growth 
continues.

γ
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Future Work

The current (each PAGS, IT & CCT, Fe-03C & Fe- 
0.3C-1.0Mn) results should be used in 
conjunction with spherical simulations and 
automated optimization techniques to arrive at 
more broadly acceptable apparent mobility and 
carbon diffusivity functions.

PFM’s should be further pursued in 3-D to 
generate a more detailed understanding of the 
nucleation, carbon leaking and transformation 
domain (PAGS) issues.

Deep penetrating X-rays from a synchrotron 
source should continue to be exploited to 
understand how ferrite forms in 3-D space. 
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Questions and Discussion
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Free Energy and Nucleation
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Carbon Profiles
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Effect of Temperature on The System
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Driving Force for Ferrite Nucleation and Growth
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Driving Force for Cementite Nucleation and Growth
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Fe-0.3C Cooled at 0.05°C/s Down to 730°C 

Martensite

Martensiteferrite

ferrite

ferrite

pearlite

pearlite

‘halo’ around pearlite

• Suggests that as conditions are 
approaching cementite (pearlite) 
initiation some cementite 
precipitates. 
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The Phase Field Method

The derivation of the phase field equations is 
consistent with thermodynamic and kinetic 
principles.

The derivation results in coupled partial differential 
equations (PDE’s).  

Coupling occurs due to thermodynamic stability as 
a functions of local chemistry for the non- 
conserved (phase) field, and the thermodynamic 
driving force for diffusion for the conserved 
(composition) field.

Solve coupled PDE’s for conserved and non- 
conserved field variables
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Phase Field Method Governing Equations

Conserved Fields (i.e., composition)

Non-Conserved Fields (i.e., phases)
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The Phase Field Method

“After selecting the field variables, the next step is 
to formulate the coarse-grained free energy as a 
functional of these fields.  A general form of the 
polynomial approximation of the bulk chemical 
free energy can be written as a Taylor 
expansion series.”

Ref. Y. Wang, L.-Q. Chen, Methods in Materials Research (2000) 2a.3.1- 
2a.3.23

Application to Fe-C system for massive and 
Widmenstatten ferrite has been completed

Ref. Loginova et. al. Acta. Met. 2003, p 1327-. and 2004, p 4055-.
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Free Energy Contributions

Bulk free energy

Non-conserved phase field equation

Free Energy

where W is a function of interface energy and thickness
and Gm is differentiable w.r.t φ

( )
)10156()(

1)(
23

22

+−=

−=

φφφφ

φφφ

p
g

dVTuGF
V

cmchem ∫ ⎥
⎦

⎤
⎢
⎣

⎡
∇+= 2

2

2
),,( φ

ε
φ φ

WgTuGpTuGpTuG cmcmcm )(),()(),())(1(),,( φφφφ αγ ++−=

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

g(φ)

Fu
nc

tio
n 

Va
lu

e

Phase Field Term (φ)

p(φ)



Advanced 
Steel 

Processing
and 

Products 
Research 

Center

Non-conserved phase field

Phase Evolution Equation

Where ε, the gradient energy term, is a function 
of interface energy and thickness

and Mφ

 

is the apparent phase field 
interfacial mobility
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Diffusion Terms

Flux

Postulates for continuous spatial functions
Site fraction and carbon mobility
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Conserved phase field

Composition Evolution Equation
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