

On the Effect of Prior Austenite Grain Size on the Rate of Ferrite Allotriomorph Growth and Final Ferrite 1/2 Thickness in Hypoeutectoid Fe-0.3C and Fe-0.3C-X Alloys

Alemi Meeting, McMaster University June 18, 2007 E. Buddy Damm, Ph.D. The Timken Company Section Manager – Application Metallurgical Laboratory

- Definitions
- Background and Introduction
- Questions and Outline
- Experimental Procedures
- Results and Discussion
 - Microstructural Evolution
 - Analytical Results
 - DICTRA vs. Experiment
 - Phase Field Simulations
- Conclusions and Future Work

TIMKEN[®]

Definitions

For a fixed thermodynamic condition(s)...

- DCM Diffusion Controlled Mode
 - The interface mobility is effectively infinitely fast, and the rate of diffusion controls the progress of the transformation.
- ICM Interface Controlled Mode

The diffusion mobility is effectively infinitely fast, and the interface mobility controls the rate of transformation.

Background

Controlled Thermomechanical Processing (CTMP)*

 Measured and simulated overall transformation in medium carbon alloy steels as a function of prior austenite grain size (PAGS).

Background Continued

Simple extrapolations do not accurately describe what is happening

1040 Steel – 670°C Isothermal Hold

• Coarser prior austenite grain exhibits thicker ferrite half thickness

Relevance

Industrial Relevance

- Microstructures lead to properties
- Prior Austenite Grain Size...
 - Can be manipulated via heat treatment (i.e. normalizing)
 - Can be controlled with thermomechanical processing and/or microalloying
 - Is often left uncontrolled (i.e. forging, or tube & bar rolling)

Scientific Relevance

 Despite decades of ferrite growth research, we continue to lack a quantitatively accurate, physically based description for ferrite growth. This work sheds new light on aspects that must be incorporated.

TIMKEN[.]

Thesis Questions and Outline

This work asks the following questions;

- 1. How does prior austenite grain size affect ferrite growth rate and final ferrite (1/2) thickness in ferrite + pearlite microstructures?
- 2. What is the effect of grain size on the establishment of conditions for pearlite nucleation and growth?
- In order to address these questions the following tasks were pursued.
- 1. Generation of simple binary and ternary alloys for laboratory investigation,
- 2. Evaluation and observations of the ferrite growth rate and final ferrite (1/2) thickness using a range of experimental techniques, and
- 3. Application or generation of physically based mesoscale analytical models that predict the above experimental observations.

Experimental Alloy Preparation

Alloy	С	Mn	Cr	AI	O(ppm)	N(ppm)	
Fe-0.1C	0.14	0.01	0.01	0.009	78	8	
Fe-0.3C	0.33	0.01	0.01	0.002	28	8	
Fe-0.3C-1.0Mn	0.33	0.94	0.01	0.003	36	7	
Fe-0.3C-3.0Mn	0.34	2.93	0.01	0.004	30	8	
Fe-0.3C-3.0Cr	0.34	0.01	3.03	0.006	27	7	
Nominal Others - Si, Ni, Mo, Cu, S = 0.01; Sn, V, Ti = 0.001, Co, P, W = 0.002							

- 45 kg Vacuum Induction Melted heats
- Electrolytic iron feed
- Killed with carbon (to avoid Al, Si)
- Forged and rolled ~ 90% R.A.
- Ternaries homogenized at 1200°C 36 hours

Fe-0.1C – Transforms too fast and with too much ferrite Fe-0.3C-3X – Transforms too slow and with nil ferrite

Dilatometry Samples

Results and Discussion

Microstructural Evolution Modeling Vs. Experiment

TIMKEN[°]

Grain Size Establishment

Solute drag Vs. Grain boundary energy/mobility?

Fe-0.3C, PAGS Vs. ϕ_{α}

Products Research Center

Steel

and

Fe-0.3C-1.0Mn, PAGS Vs. ϕ_{α}

Fe-0.3C-1.0Mn, CCT at 0.1°C/s

Fe-0.3C-1.0Mn CCT Trends

- PAGS \uparrow , $\phi_{\alpha} \downarrow$
- PAGS \uparrow , t_{1/2} \uparrow

Fe-0.3C-1.0Mn, IT at 675°C

Fe-0.3C-1.0Mn IT Trends

- PAGS \uparrow , $\phi_{\alpha} \downarrow$
- PAGS \uparrow , $t_{1/2}$ \uparrow

Transformation Reaction Path

Fe-0.3C, Planar Vs. Spherical IT Growth

TIMKEN[®]

Fe-0.3C-1.0Mn, Planar Vs. Spherical IT Growth

Fe-0.3C, Planar Vs. Spherical CCT Growth

- PAGS impacts the volume of austenite available to accept carbon.
- A small volume of austenite reduces the steepness of the carbon profile and diminishes the driving force.
- At sufficiently small grain sizes and with certain IT or CCT conditions, soft impingement can further impact ferrite growth rate.
- Diffusion Control Mode (DCM) simulations often under predict the ferrite $t_{1/2}^{\alpha}$ when compared to experiment.

What is Next? –

Comparing Experimental Growth Rate to Modeled Growth Rate

Dilatometry Data Conversion

- Provides volume fraction (ϕ_i) at each time and temperature from dilation data
- Lattice parameters
 - $a_{\gamma} = F[T, C]$
 - $a_{\alpha} = F[T]$
 - a_{Fe_3C} , b_{Fe_3C} , $c_{Fe_3C} = F[T]$
 - $a_m, c_m = F[T, C]$

Carbon

- During ferrite formation austenite is enriched
- Pearlite, bainite and martensite are treated as neutral (i.e. the carbon in austenite after ferrite stops defines the carbon/cementite in the next phase/constituent)
- Superior approach compared to the 'lever rule'

TIMKEN[.]

Interface Position and Velocity

Center

Approach

- Convert dilation data to ferrite phase fraction based on temperature, carbon and phase dependant lattice parameters
- Convert ferrite phase fraction data to interface position and velocity assuming spherical grains

Fe-0.3C, DCM Vs. Experiment

Fe-0.3C IT summary

At 700°C, Widmenstätten ferrite formed for coarse grains

At 650°C, Hardenability problems exacerbated

Fe-0.3C CCT summary

When Widmenstätten was not present, DCM simulations provided reasonable final ferrite 1/2 thickness

For both IT and CCT, DCM over predicted early and under predicted later growth rate.

TIMKEN[.]

Fe-0.3C Experimental Vs. DCM Ferrite $t_{1/2}^{\alpha}$

	Fine Grain		Medium Grain		Coarse Grain	
Isothermal Hold (°C)	Sim.	Exp.	Sim.	Exp.	Sim.	Exp
700	2.7	5.3	N-R	N-R	Wid.	Wid.
675	Unk.	2.2	Unk.	2.9	1.2	3.6
650	Unk.	1.0	Unk.	1.0	Unk.	1.3

	Fine Grain		Medium Grain		Coarse Grain	
Cooling Rate (°C/s)	Sim.	Exp.	Sim.	Exp.	Sim.	Exp.
0.05	5.0	5.0	N-R	N-R	22.2	25
0.1	N-R	N-R	12.3	12.8	Wid.	Wid.
0.5	5.1	4.7	9.4	10.4	N-R	N-R
1	5.2	4.2	7.8	8.0	N-R	N-R

Advanced Steel Processing and Products Research Center

Values in μ m, N-R = Not Run, Wid. = Widmenstätten, Unk. = Unknown

Fe-0.3C-1.0Mn, DCM Vs. Experiment

Fe-0.3C-1.0Mn IT Summary

Fine grains resulted in closer predictions while medium and coarse grains were again under predicted.

Fe-0.3C-1.0Mn CCT Summary

DCM simulations were closest for fine grains and provided reasonable final ferrite 1/2 thickness

For both IT and CCT, DCM over predicted early and under predicted later growth rate.

TIMKEN[®]

Fe-0.3C-1.0Mn Experimental Vs. DCM $t_{1/2}^{\alpha}$

	Fine Grain		Medium Grain		Coarse Grain	
Isothermal Hold (°C)	Sim.	Exp.	Sim.	Exp.	Sim.	Exp.
675	3.6	3.6	3.4	5.3	3.4	7.8
650	1.3	1.4	1.3	2.1	1.3	2.5
625	0.8	0.4	0.9	0.7	1	1.2

	Fine Grain		Medium Grain		Coarse Grain	
Cooling Rate (°C/s)	Sim.	Exp.	Sim.	Exp.	Sim.	Exp.
0.05	4.6	3.6	9.0	8.4	12.8	15.7
0.1	N-R	3.5	N-R	7.4	N-R	13.0
0.3	4.3	3.3	N-R	N-R	7.0	10.2
1	N-R	N-R	N-R	3.1	N-R	5.7

Advanced Steel Processing and Products Research Center

Values in μ m, N-R = Not Run

- DCM, the supposed upper bound in growth rate over predicts initial growth, but more importantly, under predicts later growth.
- At all IT or CCT conditions studied, PAGS impacts growth rate, but only minimally at PAGS > 175μ m.
- At sufficiently small PAGS, and with certain alloy and transformation conditions, DCM is nearly accurate because of soft impingement. (i.e. when the driving force is nearly consumed).

What is Next? -

Modifying initial and later growth rate with the Phase Field Method

TIMKEN

Phase Field Method Governing Equations

Conserved Fields (composition)

 $\frac{\partial c(\mathbf{r},t)}{\partial t} = -\nabla \bullet \mathbf{J} \qquad \text{Cahn-Hilliard} \quad \mathbf{J} = -M\nabla \mu$ $\mu = \frac{\delta F_{cg}}{\delta c} = \frac{\delta F_{chem}}{\delta c} + \frac{\delta F_{elast}}{\delta c} + \frac{\delta F_{inter}}{\delta c} + \dots$

Non-Conserved Fields (phases)

$$\frac{\partial \eta(\mathbf{r},t)}{\partial t} = -L \frac{\delta F_{cg}}{\delta \eta(\mathbf{r},t)}$$

Cahn-Allen, or Time Dependant Ginzburg-Landau

My System

Composition, $c_1 = Fe, c_2 = C, c_3 = Mn...$ Order Parameter, $\eta_1 = \gamma, \eta_2 = \alpha, \eta_3 = \theta, \eta_4 = ASTM$...

- The derivation of the phase field equations is consistent with thermodynamic and kinetic principles, and incorporates the apparent interface moblility.
- The derivation results in coupled partial differential equations (PDE's).
- Coupling occurs due to thermodynamic stability as a functions of local chemistry for the non-conserved (phase) field, and the thermodynamic driving force for diffusion for the conserved (composition) field.
- Solve coupled PDE's for conserved and non-conserved field variables.
- Additional terms are often added to account for anisotropic interfacial energy, grain orientation, etc. allowing for realistic simulations of 3-D morphologies Phase Field Models are Computationally Expensive!

Phase Field Modeling Results

A phase field model was built based on the construct of Loginova et al. using FiPy (NIST general PDE tool), and the Loginova *et al.* 1-D test code was also obtained and used to run simulations.

As constructed these codes essentially give the same result as DICTRA.

Apparent Phase Field Mobility

PFM results with a*M_{Hillert} value show with the Hillert value the PFM reduces to DCM. Recent work by Hoagland et. Al. at KTH revised the Hillert Mobility down ~ 5 orders of magnitude

Diffusion of Carbon in Austenite

Advanced

Steel

Processing

and

Products

Research Center

PFM Results with Higher D_c^{γ}

 Increasing the diffusion of carbon in austenite by a factor of ~ 3 or more in order to increase the rate of transformation to approximate the experimentally measured rate.

Conclusions

- For IT conditions the final ferrite ½ thickness decreases as the PAGS is reduced due to the reduced volume of austenite available to accept carbon.
- For CCT conditions the PAGS also impacts carbon accumulation, but for fine grains the occurrence of soft impingement and 'filling' reduces the strength of the PAGS on the final ferrite ½ thickness.
- Generally accepted D_c^{γ} functions under predict the carbon diffusivity in austenite at temperatures relevant to ferrite growth.
- DCM over predicts early ferrite growth and under predicts later ferrite growth.
- Phase Field Modeling can be used to allow early growth to proceed via ICM, and trend toward DCM as growth continues.

Future Work

- The current (each PAGS, IT & CCT, Fe-03C & Fe-0.3C-1.0Mn) results should be used in conjunction with spherical simulations and automated optimization techniques to arrive at more broadly acceptable apparent mobility and carbon diffusivity functions.
- PFM's should be further pursued in 3-D to generate a more detailed understanding of the nucleation, carbon leaking and transformation domain (PAGS) issues.
- Deep penetrating X-rays from a synchrotron source should continue to be exploited to understand how ferrite forms in 3-D space.

Thank You!

Questions and Discussion

Extra Slides

Free Energy and Nucleation

Carbon Profiles

Effect of Temperature on The System

TIMKEN

Driving Force for Ferrite Nucleation and Growth

Driving Force for Cementite Nucleation and Growth

Research Center

Fe-0.3C Cooled at 0.05°C/s Down to 730°C

'halo' around pearlite

TIMKEN

 Suggests that as conditions are approaching cementite (pearlite) initiation some cementite precipitates.

- The derivation of the phase field equations is consistent with thermodynamic and kinetic principles.
- The derivation results in coupled partial differential equations (PDE's).
- Coupling occurs due to thermodynamic stability as a functions of local chemistry for the nonconserved (phase) field, and the thermodynamic driving force for diffusion for the conserved (composition) field.
- Solve coupled PDE's for conserved and nonconserved field variables

TIMKEN

Phase Field Method Governing Equations

Conserved Fields (i.e., composition)

 $\frac{\partial c(\mathbf{r},t)}{\partial t} = -\nabla \bullet \mathbf{J} \qquad \text{Cahn-Hilliard} \quad \mathbf{J} = -M\nabla \mu$ $\mu = \frac{\delta F_{cg}}{\delta c} = \frac{\delta F_{chem}}{\delta c} + \frac{\delta F_{elast}}{\delta c} + \frac{\delta F_{inter}}{\delta c} + \dots$

Non-Conserved Fields (i.e., phases)

$$\frac{\partial \eta(\mathbf{r},t)}{\partial t} = -L \frac{\delta F_{cg}}{\delta \eta(\mathbf{r},t)}$$

Cahn-Allen, or Time Dependant Ginzburg-Landau

My System

$$c_1 = Fe, c_2 = C, c_3 = Mn...$$

$$\eta_1 = \gamma, \eta_2 = \alpha, \eta_3 = \theta, \eta_4 = ASTM...$$

The Phase Field Method

- "After selecting the field variables, the next step is to formulate the coarse-grained free energy as a functional of these fields. A general form of the polynomial approximation of the bulk chemical free energy can be written as a Taylor expansion series."
- Ref. Y. Wang, L.-Q. Chen, *Methods in Materials Research* (2000) 2a.3.1-2a.3.23
- Application to Fe-C system for massive and Widmenstatten ferrite has been completed Ref. Loginova et. al. Acta. Met. 2003, p 1327-. and 2004, p 4055-.

Free Energy Contributions

Non-conserved phase field equation

$$F_{chem} = \int_{V} \left[G_m(u_c, T, \phi) + \frac{\varepsilon_{\phi}^2}{2} \left| \nabla \phi \right|^2 \right] dV$$

Free Energy

$$G_m(u_c, T, \phi) = (1 - p(\phi))G_m^{\gamma}(u_c, T) + p(\phi)G_m^{\alpha}(u_c, T) + g(\phi)W$$

where W is a function of interface energy and thickness and G_m is differentiable w.r.t ϕ

Non-conserved phase field

Phase Evolution Equation

Where ϵ , the gradient energy term, is a function of interface energy and thickness

and $M_{\boldsymbol{\varphi}}$ is the apparent phase field interfacial mobility

Diffusion Terms

Flux

$$J_{c} = -L'' \frac{\partial^{2} G_{m}}{\partial u_{c}^{2}} \nabla u_{c} - L'' \frac{\partial^{2} G_{m}}{\partial u_{c} \partial \phi} \nabla \phi$$
$$L'' = \frac{u_{c}}{V_{m}} y_{va} M_{c}$$
Postulates for continuous spatial functions

Site fraction and carbon mobility

$$u_{c} y_{va} = p(\phi) u_{c} \left(1 - \frac{u_{c}}{3} \right) + (1 - p(\phi)) u_{c} \left(1 - u_{c} \right)$$

 $M_{c} = (M_{c}^{\alpha})^{p(\phi)} (M_{c}^{\gamma})^{(1-p(\phi))}$

Composition Evolution Equation

$$\mathbf{v}_{c} = \nabla \left[(M_{c}^{\alpha})^{p(\phi)} (M_{c}^{\gamma})^{(1-p(\phi))} \left\{ p(\phi) u_{c} \left(1 - \frac{u_{c}}{3} \right) + (1 - p(\phi)) u_{c} \left(1 - u_{c} \right) \right\} \frac{1}{V_{m}} \left(\frac{\partial^{2} G_{m}}{\partial u_{c}^{2}} \nabla u_{c} + \frac{\partial^{2} G_{m}}{\partial u_{c} \partial \phi} \nabla \phi \right) \right]$$

Solve the coupled PDE's for u_c and ϕ