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DCM Vs. ICM Growth

For a fixed thermodynamic condition(s)...
DCM — Diffusion Controlled Mode

The interface mobillity is effectively infinitely fast, and the
rate of diffusion controls the progress of the
transformation.

ICM — Interface Controlled Mode

The diffusion mobility is effectively infinitely fast, and the
Interface mobility controls the rate of transformation.
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Background

Controlled Thermomechanical Processing (CTMP)’

 Measured and simulated overall transformation in medium
carbon alloy steels as a function of prior austenite grain
size (PAGS).
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Background Continued

Simple extrapolations do not accurately describe what is happening
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Relevance

Industrial Relevance
e Microstructures lead to properties

e Prior Austenite Grain Size...
« Can be manipulated via heat treatment (i.e. normalizing)

« Can be controlled with thermomechanical processing
and/or microalloying

» Is often left uncontrolled (i.e. forging, or tube & bar rolling)
Scientific Relevance

* Despite decades of ferrite growth research, we
continue to lack a quantitatively accurate,
physically based description for ferrite growth. This
work sheds new light on aspects that must be
Incorporated.
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Thesis Questions and Outline

This work asks the following questions:

1.

2.

How does prior austenite grain size affect ferrite growth
rate and final ferrite (1/2) thickness in ferrite + pearlite
microstructures?

What is the effect of grain size on the establishment of
conditions for pearlite nucleation and growth?

In order to address these questions the following tasks

1.

2.

were pursued.

Generation of simple binary and ternary alloys for
laboratory investigation,

Evaluation and observations of the ferrite growth rate and
final ferrite (1/2) thickness using a range of experimental
techniques, and

Application or generation of physically based mesoscale
analytical models that predict the above experimental
observations. Adyanced
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Experimental Alloy Preparation

Alloy C Mn Cr Al O(ppm) | N(ppm)
Fe-0.1C 0.14 0.01 0.01 0.009 78 8
Fe-0.3C 0.33 0.01 0.01 0.002 28 8
Fe-0.3C-1.0Mn 0.33 0.94 0.01 0.003 36 7
Fe-0.3C-3.0Mn 0.34 2.93 0.01 0.004 30 8
Fe-0.3C-3.0Cr 0.34 0.01 3.03 0.006 27 7
Nominal Others - Si, Ni, Mo, Cu, S =0.01; Sn, V, Ti =0.001, Co, P, W =0.002

e 45 kg Vacuum Induction Melted heats

» Electrolytic iron feed

* Killed with carbon (to avoid Al, Si)

 Forged and rolled ~ 90% R.A.

 Ternaries homogenized at 1200°C — 36 hours

Fe-0.1C — Transforms too fast and with too much ferrite  “s”
Processing

Fe-0.3C-3X — Transforms too slow and with nil ferrite prS‘SSctE
Researc

Center
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Dilatometry Samples
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Thermal Cycles &S

e
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Results and Discussion

Microstructural Evolution
Modeling Vs. Experiment
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Grain Size Establishment
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Fe-0.3C, PAGS Vs. ¢,
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Fe-0.3C-1.0Mn, PAGS Vs. ¢,
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Fe-0.3C-1.0Mn

CCT Trends
« PAGS T, ¢, {
« PAGS 1,1, 1T
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Fe-0.3C-1.0Mn, IT at 675°C [fed

Fe-0.3C-1.0Mn
IT Trends

« PAGS T, ¢, ¢

« PAGS 1,1, 1T
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Transformation Reaction Path
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. || Fe-0.3C, 675°C
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Fe-0.3C-1.0Mn, Planar Vs. Spherical IT Growth
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u-fraction carbon

Fe-0.3C, Planar Vs. Spherical CCT Growth
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What Has Been Established?

PAGS impacts the volume of austenite available to
accept carbon.

A small volume of austenite reduces the steepness
of the carbon profile and diminishes the driving
force.

At sufficiently small grain sizes and with certain IT
or CCT conditions, soft impingement can further
Impact ferrite growth rate.

Diffusion Control Mode (DCM) simulations often
under predict the ferrite t,,, when compared to

experiment.
What is Next? — s
Comparing Experimental Growth Rate to Psd'g

Products
Research

Modeled Growth Rate eseare



Dilatometry Data Conversion

Provides volume fraction (¢;) at each time and
temperature from dilation data

Lattice parameters
« a =FT,C]
 a,=F[T]

*  8peycr Preges Cregc = FITI

Carbon
e During ferrite formation austenite is enriched

« Pearlite, bainite and martensite are treated as neutral
(i.e. the carbon in austenite after ferrite stops defines
the carbon/cementite in the next phase/constituent)

» Superior approach compared to the ‘lever rule’ Adaneed
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and
Products
Research
Center



Interface Position and Velocity

tOL
Approach )

Convert dilation data to
ferrite phase fraction (X
based on temperature,
carbon and phase r y

|

dependant lattice .
parameters r

Convert ferrite phase
fraction data to interface
position and velocity
assuming spherical
grains
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Fe-0.3C, DCM Vs. Experiment

1/2 Thickness (m)

5 0x10° - 0.3C, 675°C 3.0x10° 7 N
fine grain ] Fe-0.3C, -0.05 °Cls
- - —spherical Dictra Prediction
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4.0x10 " 1 medium grain l - - —=Medium
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Fe-0.3C IT summary
At 700°C, Widmenstatten ferrite formed for coarse grains
At 650°C, Hardenability problems exacerbated
Fe-0.3C CCT summary
_ ) _ _ _ ] Advanced
When Widmenstatten was not present, DCM simulations provided reasonable final el
. . rocessing
ferrite 1/2 thickness and
Products

For both IT and CCT, DCM over predicted early and under predicted later growth rate. Research
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Fe-0.3C Experimental Vs. DCM Ferrite t,,

Fine Grain Medium Grain Coarse Grain

Isothermal Hold (°C) Sim. EXp. Sim. EXp. Sim. Exp

700 2.7 5.3 N-R N-R wid. wid.

675 Unk. 2.2 Unk. 2.9 1.2 3.6

650 Unk. 1.0 Unk. 1.0 Unk. 1.3

Fine Grain Medium Grain Coarse Grain

Cooling Rate (°C/s) Sim. Exp. Sim. EXxp. Sim. EXp.
0.05 5.0 5.0 N-R N-R 22.2 25

0.1 N-R N-R 12.3 12.8 wid. wid.

0.5 5.1 4.7 9.4 10.4 N-R N-R

1 5.2 4.2 7.8 8.0 N-R N-R

Values in um, N-R = Not Run, Wid. = Widmenstéatten, Unk. = Unknown
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1/2 Thickness (m)

1.8x107
Fe-0.3C-1.0Mn, -0.05°C/s
fine grain
- - - spherical
_-7 - experimental
= z medium grain
Fe-0.3C-1.0Mn, 675°C e - = - spherical
fine grain § experimental
- - —spherical S coarse grain
experimental — & - - - spherical
medium grain S experimental
- — —spherical
experimental
coarse grain
- - —spherical
experimental 1 SN
T T T T T T T T T T T T T T T T T T T T T T T T T T T ]~-NE T 1
0O 30 60 90 120 150 180 210 240 27 650 675 700 725 750 775 800
Time (s) Temperature (°C)

Fe-0.3C-1.0Mn IT Summary

Fine grains resulted in closer predictions while medium and coarse grains were again
under predicted.

Fe-0.3C-1.0Mn CCT Summary

DCM simulations were closest for fine grains and provided reasonable final ferrite 1/2
thickness

For both IT and CCT, DCM over predicted early and under predicted later growth rate.
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Fe-0.3C-1.0Mn Experimental Vs. DCM t,,

Fine Grain Medium Grain Coarse Grain

Isothermal Hold (°C) Sim. EXp. Sim. EXp. Sim. EXp.
675 3.6 3.6 3.4 5.3 3.4 7.8

650 1.3 1.4 1.3 2.1 1.3 2.5

625 0.8 0.4 0.9 0.7 1 1.2

Fine Grain Medium Grain Coarse Grain

Cooling Rate (°C/s) Sim. EXp. Sim. EXp. Sim. Exp.
0.05 4.6 3.6 9.0 8.4 12.8 15.7

0.1 N-R 3.5 N-R 7.4 N-R 13.0

0.3 4.3 3.3 N-R N-R 7.0 10.2

1 N-R N-R N-R 3.1 N-R 5.7 Adyanced

Processing
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Values in um, N-R = Not Run Products
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What Else Has Been Established?

DCM, the supposed upper bound in growth rate over
predicts initial growth, but more importantly, under
predicts later growth.

At all IT or CCT conditions studied, PAGS impacts
growth rate, but only minimally at PAGS > 175um.

At sufficiently small PAGS, and with certain alloy and
transformation conditions, DCM is nearly accurate
because of soft impingement. (i.e. when the driving
force is nearly consumed).

What is Next? —
Modifying initial and later growth rate with the Advanced

Steel
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Phase Field Method Governing Equations

Conserved Fields (composition)

XY _ _vey  Cahn-Hilliard J=-MVu

ok, OF oF oF

chem elast inter

oC oc oc oc

u

Non-Conserved Fields (phases)

on(r,t) 1 oF,, Cahn-Allen, or Time Dependant
ot on(rt) Ginzburg-Landau
My System
Composition, Cl — Fe; C2 — C1 C3 — Mn :2%%51

and

Order Parameter, 7}y = Y, 1], = O, 1] = (9, N, = ASTM ... st
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The Phase Field Method

The derivation of the phase field equations is consistent
with thermodynamic and kinetic principles, and
Incorporates the apparent interface moblility.

The derivation results in coupled partial differential
equations (PDE’s).

Coupling occurs due to thermodynamic stability as a
functions of local chemistry for the non-conserved

(phase) field, and the thermodynamic driving force
for diffusion for the conserved (composition) field.

Solve coupled PDE’s for conserved and non-conserved
field variables.

Additional terms are often added to account for
anisotropic interfacial energy, grain orientation, etc.
allowing for realistic simulations of 3-D morphologies processing

and
Phase Field Models are Computationally Expensive!  froiue
Center
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Phase Field Modeling Results

position (m)
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2.0x10° H
1.5x10°
1.0x10°

5.0x10" -

0.0

Fe-0.3C, IT at 675°C

Fe-0.3C, T =675°C
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----- Loginova et. al.

u-fraction carbon

Time (s)
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0.07 -

0.06 time interval =0.25s
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| I vl
A
o e R T A

OOO 1 ' 1 1 1 1

0.0 1.0x10° 2.0x10° 3.0x10° 4.0x10° 5.0x10°
position (m)

A phase field model was built based on the construct of Loginova et al. using

FiPy (NIST general PDE tool), and the Loginova et al. 1-D test code was

also obtained and used to run simulations.

As constructed these codes essentially give the same result as DICTRA.
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Apparent Phase Field Mobility

ST 50

ey
----- Militzer et al.
1B49 .. Krielaart et al., 1Mn 0.06 Fe-0.3C. T = 650°C
= -----Krielaartetal.,2Mn | _~— | W N | a:, le-5, t=2.5s
= = oos4  IVY*\v | a=le-5, t=5.0s
= 5 ——a=0.075, t=2.5s
g 1E6 'CEG ———a=0.075, t=5.0s
g __--- S 0D = a=0.25,t=2.5s
> 1E7 S S —=—a=0.25,1=5.0s
3 PR g 003 —s—a=1.0,t=2.5s
S 1Es8 -7 T —o—a=10,t=5.0s
g -7 ,,-u:-%‘-""a"' 0.02 -
T 1E9 e s2 75T
3 1E-10 ,,W,....»—*""‘Mw 0.01
1E-11+ - T T T T T T 1 0.00 T 3 T T T T T T T T 1
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Temperature (°C) position (M)
Hillert proposal based on a/a. coarsening, others based on o growth
In .
PFM results with a*M,;;.. value show with the Hillert value the PFM i
v
reduces to DCM. Recent work by Hoagland et. Al. at KTH Cand
. . - . Products
revised the Hillert Mobility down ~ 5 orders of magnitude Research
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FIG. 1

The diffusion coefficient for car-
bon in y-iron using atomic frac-
tion as concentration variable,
The symbols denote experimental
values from Wells, Batz and Meh]
(2), and the solid lines are cal-
culated using the present analy-
sis.

LOG (0 H2/5 )

-12.0@a ; : ; S .
B B2 .24 .86 . B8 Q.18
ATOMIC FRACTION CARBOMN

- A Current work is for temperatures of

LT LT 625-725°C (900-1000°K) and

ekt carbon contents between 0.01 and Advanced
o it R . . Steel
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2]: z:g;g : K T=1578 K and

T T=1231 K Products
e Research

Center



TIMKEN

PFM Results with Higher D,

3.5x10° = Fe-0.3C, IT at 675°C
- ,/ . ‘ ’ -
-6 ./ . ‘ e - -
3.0x10™ r__'q/__._'____’
I
—~ 2.5x10° 4 |
S ,
n ! /
7p] 6 _| I ‘
o 2.0x10 /
< I/
X /
E -6 .
: 1.5x10” Loginova et al. code
) d=1.00
1.0x10° - - - -d=1.25
----- d=2.00
. —-—- d=3.00
5.0x10" 7 ( Experimental Results
/ — — Coarse PAGS
”
0.0 4—=— | : | : | : | : | : |
-1 0 1 2 3 4 5
. I Time(s) e
* Increasing the diffusion of carbon in austenite by a factor of ~ 3 or more Processing
. . . . d
in order to increase the rate of transformation to approximate the Products
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Conclusions

For IT conditions the final ferrite Y2 thickness decreases as
the PAGS is reduced due to the reduced volume of
austenite available to accept carbon.

For CCT conditions the PAGS also impacts carbon
accumulation, but for fine grains the occurrence of soft
iImpingement and ‘filling’ reduces the strength of the
PAGS on the final ferrite ¥z thickness.

Generally accepted DZ functions under predict the carbon
diffusivity in austenite at temperatures relevant to ferrite
growth.

DCM over predicts early ferrite growth and under predicts
later ferrite growth.

Phase Field Modeling can be used to allow early growth to
proceed via ICM, and trend toward DCM as growth

. Advanced
continues. Steel
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Future Work [&s)

The current (each PAGS, IT & CCT, Fe-03C & Fe-
0.3C-1.0Mn) results should be used In
conjunction with spherical simulations and
automated optimization techniques to arrive at
more broadly acceptable apparent mobility and
carbon diffusivity functions.

PFM'’s should be further pursued in 3-D to
generate a more detailed understanding of the

nucleation, carbon leaking and transformation
domain (PAGS) issues.

Deep penetrating X-rays from a synchrotron
source should continue to be exploited to
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Thank You!

Questions and Discussion
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Free Energy and Nucleation
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Carbon Profiles
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Effect of Temperature on The System
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Driving Force for Ferrite Nucleation and Growth
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Fe-0.3C Cooled at 0.05°C/s Down to 730°C [les)
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The Phase Field Method

The derivation of the phase field equations is
consistent with thermodynamic and kinetic
principles.

The derivation results in coupled partial differential
equations (PDE’s).

Coupling occurs due to thermodynamic stability as
a functions of local chemistry for the non-
conserved (phase) field, and the thermodynamic
driving force for diffusion for the conserved
(composition) field.

Solve coupled PDE'’s for conserved and non-
conserved field variables
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Phase Field Method Governing Equations

Conserved Fields (i.e., composition)

XY _ _vey  Cahn-Hilliard J=-MVu
oF .
U= g _ 5Fchem 5Felast 4+ 5F|nter +

oC oc oc oc

Non-Conserved Fields (i.e., phases)

on(r,t) _ L oF,, Cghn-AIIen, or Time Dependant
ot Sn(r,t) Ginzburg-Landau
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The Phase Field Method

“After selecting the field variables, the next step is
to formulate the coarse-grained free energy as a
functional of these fields. A general form of the
polynomial approximation of the bulk chemical
free energy can be written as a Taylor

expansion series.”

Ref. Y. Wang, L.-Q. Chen, Methods in Materials Research (2000) 2a.3.1-
2a.3.23

Application to Fe-C system for massive and

Widmenstatten ferrite has been completed
Ref. Loginova et. al. Acta. Met. 2003, p 1327-. and 2004, p 4055-.
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Bulk free energy T
2 0.8-
9(¢) = #°(1-¢) 0
p(¢) = ¢°(6¢4° —15¢ +10)
Non-conserved phase field equation il a(¢)
52 Ry T
I:Chem - -“|:Gm (uc ! T ' ¢) + ?¢ ‘V¢‘2 dV ” > PhaS:FieId Tglr?n (4) o B
\Y

Free Energy
G (U, T,¢) =(1—- p(#))Gr (U, T) + p(h)G (U, T) + g (W

where W is a function of interface energy and thickness
and G, is differentiable w.r.t ¢
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Non-conserved phase field

Phase Evolution Equation

y oG

¢:_M¢ .
0P

%:—qu 1 6, —&°Ve¢
Vi 09 i

Where ¢, the gradient energy term, is a function
of interface energy and thickness

and M, is the apparent phase field
interfacial mobility
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Diffusion Terms

Flux

2 2
J. = —L”a sz Vu, - L’ Gy Vo
ou, ou.0¢
u
L"=—"y.M
Vm yva C

Postulates for continuous spatial functions
Site fraction and carbon mobility

U

UoYua = PAU| 1= |+ (L~ p(¢))u.(1-u,)

M, =(MZ&)PP(M7)EP) .
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Conserved phase field

Composition Evolution Equation

.=V (Ms‘)“@(Mz)“p<¢”{p(¢>u{1—“§j+

2 2
(8 Cn Vu, + s V¢)

- p()u,(L-u, )}

5 c
V_{ ou’ ou.0¢ )
Solve the coupled PDE’s for u and ¢
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