Ordering of nano-scale structures on micron length scales

Ken Elder, Oakland University

Alemi, UBC, June 8th 2011

Collaborators

Aalto U., Cristian Achim, Akusti Jaatinen, Pekka Kanerva, Guilia Rossi, Tapio Ala-Nissilä

Brown U., See-Chen Ying

IMPE, Enzo Granato

McGill U., Joel Berry, Martin Grant

McMaster U, Peter Stefanovic, J. J. Hoyt, Nik Provatas

U. of Michigan Dong-Hee Yeon, Katsuyo Thornton

Oakland U., Fabio Sanches, Mark Katakoski

Princeton U., Mikko Haataja,

Wayne State U. Zhi-Feng Huang,

U. of Western Ontario, Mikko Kartunnen,

Length Scales and Modelling

Atomistic:	DFT (density functional theory): ab-initio calculation or binding (E_o) and activation energies (E_A) of solutes at α - γ interface	f /	MD (molecular dynamics): Use DFT results to build suitable potentials for simulations of diffusion (D_b) across and mobility (M) of α - γ interface
Mesoscale: PFM (phase field model): Use DFT/MD/PFC (c_2) results for binding energy (E_o), interfacial diffusion (D_b) and mobility (M) to simulate solute drag and overall transformation kinetics		PFC (phase field crystal): Provide linkage from atomistic to continuum modelling using MD length scale and PFM time scale, translate interaction potentials to two-point correlation function (c ₂)	
Macroscal	•		

JMAK (Johnson-Mehl-Avrami-Kolmogorov): Translate PFM solute drag model into suitable **JMAK rate parameters** for overall transformation model

Validation Experiments: Validate transformation model with experimental data

Length Scales and Modelling

Length Scales and Modelling

Overview

Part 1: Multiscale Modeling

Overview

Part 1: Multiscale Modeling

Part 2: Application: Surface ordering

nm objects ordering on µm scales

Classical Density functional theory of freezing

Ramakrishnan and Yussouff, PRB **19**, 2775 (1979), Singh Phys. Rep. **207**, 351 (1991)

Liquid/Solid transition Mechanical properties

atomic number density field

Free energy functional $F \{ \rho(\vec{x}, t) \}$ Expand in density/density correlations 1^{st} term – no interaction: entropy

$$\frac{\Delta F_1}{k_B T} = \int d\vec{r} \left[\rho \ln \left(\frac{\rho}{\rho_1} \right) - \delta \rho \right]$$

where $\delta \rho \equiv \rho - \rho_1$

Classical Density functional theory of freezing

Ramakrishnan and Yussouff, PRB 19, 2775 (1979), Singh Phys. Rep. 207, 351 (1991)

atomic number density field

2nd term – two body interactions

 $\frac{\Delta F_2}{k_{\rm P}T} = -\frac{1}{2!} \iint d\vec{r}_1 d\vec{r}_2 \left[\rho(\vec{r}_1) \rho(\vec{r}_2) C_2(\vec{r}_1, \vec{r}_2) \right]$ $C_2(\vec{r_1},\vec{r_2}) \equiv$ 2-point direct correlation function <u>Key point</u>: in liquid $C_2(\vec{r_1}, \vec{r_2}) \equiv C_2(|\vec{r_1} - \vec{r_2}|)$ i.e., C₂ rotational invariant $\hat{C}_{2}(k)$ k

Classical Density functional theory of freezing

Ramakrishnan and Yussouff, PRB **19**, 2775 (1979), Singh Phys. Rep. **207**, 351 (1991)

Classical Density functional theory of freezing

Ramakrishnan and Yussouff, PRB 19, 2775 (1979), Singh Phys. Rep. 207, 351 (1991)

Example Iron, 1833 K: BCC symmetry Jaatinen, Achim, Elder, Ala-Nissilä, PRE 80, 031602 (2009) 40 $\rho(x,y,0)$ 30 ρ_l 20 10 0 x / a y/a

Problem: density very sharply peaked $\Delta x \ll a$

CDFT to Phase Field Crystal (PFC) in three easy steps

k

1) Expand in $n \equiv (\rho - \bar{\rho})/\bar{\rho}$ to order n^4

2) Truncate at
$$C_2$$
: $\frac{\Delta F}{k_B T} \approx \frac{\Delta F_1}{k_B T} + \frac{\Delta F_2}{k_B T}$

3) Expand C_2 in fourier space $\hat{C}_2(k)$ up to k^4 , i.e., $\hat{C}_2(k) \approx -\hat{C}_0 + \hat{C}_2 k^2 - \hat{C}_4 k^4$

CDFT to Phase Field Crystal (PFC) in three easy steps

Result (in dimensionless units $\vec{r} \equiv \vec{x}/R$, $R \equiv \sqrt{2} |\hat{C}_4|/\hat{C}_2|$

$$\frac{\Delta \tilde{F}}{k_b T V \bar{\rho}} \approx \frac{R^d}{V} \int d\vec{r} \left[\frac{n}{2} \left[B^l + B^x \left[2 \nabla^2 + \nabla^4 \right] \right] n - \frac{n^3}{6} + \frac{n^4}{12} \right]$$

 $B^{l} \equiv 1 - \overline{\rho} \hat{C}_{0}$ = liquid bulk modulus $B^{x} \equiv \bar{\rho} (\hat{C}_{2})^{2} / 4 \hat{C}_{4}$ ~ crystal bulk moduli

CDFT to Phase Field Crystal (PFC) in three easy steps

Assume dissipative dynamics of a conserved field

$$\frac{\partial n}{\partial dt} = D \nabla^2 \frac{\delta F}{\delta t} = D \nabla^2 \left(\left[B^l + B^x (-2 \nabla^2 + \nabla^4) \right] n - t n^2 + v n^3 \right)$$

Comparison of CDFT to PFC solutions

Jaatinen, Achim, Elder, Ala-Nissilä, PRE 80, 031602 (2009)

Density Profiles Iron, 1833 K

* Can PFC parameter be fit?

$$\frac{\Delta \tilde{F}}{k_b T V \bar{\rho}} \approx \frac{R^d}{V} \int d\vec{r} \left[\frac{n}{2} \left(B^l + B^x \left(2 \nabla^2 + \nabla^4 \right) \right) n - \frac{n^3}{6} + \frac{n^4}{12} \right]$$

Physics: elasticity, dislocations, Multiple crystal orientations

3 (2) parameters

$$\frac{\Delta \tilde{F}}{k_b T V \bar{\rho}} \approx \frac{R^d}{V} \int d\vec{r} \left[\frac{n}{2} \left(B^l + B^x \left(2 \nabla^2 + \nabla^4 \right) \right) n - t \frac{n^3}{6} + v \frac{n^4}{12} \right]$$

Physics: elasticity, dislocations, Multiple crystal orientations

3 (2) parameters

Fitting : **5 parameters** , Iron

Wu, Karma, PRB, **76**, 184107 (2007) (t,v) liquid/solid surface energy + anisotropy

6 parameters, Iron

Jaatinen, Achim, Elder, Ala-Nissilä, PRE, **80**, 031602 (2009) liquid/solid surface energy + anisotropy Miscibility gap, bulk moduli, Liquid state isothermal compressibility

Fitting : **4 parameters**, Colloids Van Teeffelen, Backofen, Voigt, Löwen, PRE **79**, 051404 (2009) Solidification rates - dynamics

,

Fitting to Iron, T = 1772 K

Quantity	Experiment/ MD	5 parameter [1]	6 parameter [2]
surface energy (100) (J/m²)	0.177 [1]	0.207	0.166
surface energy (110) (J/m²)	0.174 [1]	0.202	0.162
surface energy (111) (J/m²)	0.173 [1]	0.195	0.157
Anisotropy (%)	1.0 [1]	1.3	1.3
Expansion upon melting (ų/atom)	0.38 [3]	2.07	0.43
Solid bulk modulus (GPa)	105.0 [4]	22.2	94.5
Liquid bulk modulus (GPa)	96.2 [5]	18.6	93.2

[1] Wu, Karma, PRB, **76**, 174107 (2007)

- [2] Jaatinen, Achim, Elder, Ala-Nissilä, PRB 80, 031602 (2009).
- [3] Mendelev, Han, Srolovitz, Ackland, Sun, Asta, Phil. Mag. 83, 3977 (2003)
- [4] Dever, J. Appl. Phys., 43, 3293 (1972):
 - Adams, Agosta, Leisure, Ledbetter, J. Appl. Phys. 100, 113530 (2006)
- [5] Tsu, Takano, 88th Spring Conference (Japan Institute of Metals, Sendai 1981), 88, p. 86: Itami, Shimoji, J. Phys. F: Met. Phys, 14, L15 (1984).

Fitting to Iron, T = 1772 K

Quantity	Experiment/ MD	5 parameter [1]	6 parameter [2]
surface energy (100) (J/m²)	0.177 [1]	0.207 17%	0.166 <mark>6%</mark>
surface energy (110) (J/m²)	0.174 [1]	0.202 16%	0.162 7%
surface energy (111) (J/m²)	0.173 [1]	0.195 <mark>12%</mark>	0.157 <mark>9%</mark>
Anisotropy (%)	1.0 [1]	1.3 <mark>30%</mark>	1.3 <mark>30%</mark>
Expansion upon melting (ų/atom)	0.38 [3]	2.07	0.43
Solid bulk modulus (GPa)	105.0 [4]	22.2	94.5
Liquid bulk modulus (GPa)	96.2 [5]	18.6	93.2

[1] Wu, Karma, PRB, **76**, 174107 (2007)

percent error

- [2] Jaatinen, Achim, Elder, Ala-Nissilä, PRB **80**, 031602 (2009).
- [3] Mendelev, Han, Srolovitz, Ackland, Sun, Asta, Phil. Mag. 83, 3977 (2003)
- [4] Dever, J. Appl. Phys., 43, 3293 (1972):
 - Adams, Agosta, Leisure, Ledbetter, J. Appl. Phys. 100, 113530 (2006)
- [5] Tsu, Takano, 88th Spring Conference (Japan Institute of Metals, Sendai 1981), 88, p. 86: Itami, Shimoji, J. Phys. F: Met. Phys, 14, L15 (1984).

Fitting to Iron, T = 1772 K

Quantity	Experiment/ MD	5 parameter [1]	6 parameter [2]
surface energy (100) (J/m ²⁾	0.177 [1]	0.207	0.166
surface energy (110) (J/m²)	0.174 [1]	0.202	0.162
surface energy (111) (J/m²)	0.173 [1]	0.195	0.157
Anisotropy (%)	1.0 [1]	1.3	1.3
Expansion upon melting (ų/atom)	0.38 [3]	2.07 440%	0.43 13%
Solid bulk modulus (GPa)	105.0 [4]	22.2 79%	94.5 10%
Liquid bulk modulus (GPa)	96.2 [5]	18.6 <mark>81%</mark>	93.2 <mark>3%</mark>

[1] Wu, Karma, PRB, **76**, 174107 (2007)

percent error

- [2] Jaatinen, Achim, Elder, Ala-Nissilä, PRB 80, 031602 (2009).
- [3] Mendelev, Han, Srolovitz, Ackland, Sun, Asta, Phil. Mag. 83, 3977 (2003)
- [4] Dever, J. Appl. Phys., 43, 3293 (1972):
 - Adams, Agosta, Leisure, Ledbetter, J. Appl. Phys. 100, 113530 (2006)
- [5] Tsu, Takano, 88th Spring Conference (Japan Institute of Metals, Sendai 1981), 88, p. 86: Itami, Shimoji, J. Phys. F: Met. Phys, 14, L15 (1984).

Fitting to Iron, T = 1772 K

Quantity	Experiment/ MD	5 parameter [1]	6 parameter [2]
surface energy (100) (J/m ²⁾	0.177 [1]	0.207	0.166
surface energy (110) (J/m ²)	0.174 [1]	0.202	0.162
surface energy (111) (J/m²)	0.173 [1]	0.195	0.157
Anisotropy (%)	1.0 [1]	1.3	1.3
Expansion upon melting (ų/atom)	0.38 [3]	2.07 <mark>440</mark> %	0.43 13%
Solid bulk modulus (GPa)	105.0 [4]	22.2 <mark>79</mark> %	94.5 10%
Liquid bulk modulus (GPa)	96.2 [5]	18.6 <mark>81%</mark>	93.2 <mark>3%</mark>

Iron grain boundary energy <100> symmetric tilt boundary

Jaatinen, Achim, Elder, Ala-Nissilä, PRB 80, 031602 (2009): Tech. Mech, 30, 169 (2010)

Iron grain boundary energy <110> symmetric tilt boundary

Jaatinen, Achim, Elder, Ala-Nissilä, PRB 80, 031602 (2009): Tech. Mech, 30, 169 (2010)

Iron grain boundary energy <100> symmetric tilt boundary

Jaatinen, Achim, Elder, Ala-Nissilä, PRB 80, 031602 (2009): Tech. Mech, 30, 169 (2010)

ork

Method	Maximum GB energy	Ratio : GB energy to Liq/Sol energy
Current work	0.37 Jm ⁻²	2.2
Experiment ¹	0.46 Jm ⁻²	2.6
Embedded atom (T=0) ²	10.0 Jm ⁻²	
MD ³	1.6 Jm ⁻²	

 ¹Muir Interfacial Phenomena in Metals and Alloys Addison Wesley, New York (1975)
 ²Zhang, Huang, Wu, Xu, Appl. Surf. Sci. 252, 4936 (2005)
 ³Shibuta, Takamoto, Suzuki, ISIJ Int. 48 1582 (2008)

PFC bad approximation to CDFT – but parameters can be adjusted

or

PFC field ≠ DFT field

Jaatinen and Ala-Nissila, PRE, 82, 061602 (2010)

$$n(\vec{r}) = \frac{1}{\rho_l} \int d\vec{r} \, ' \, w(|\vec{r} - \vec{r} \, '|) \left[\rho(\vec{r}) - \rho_l \right]$$

where $\hat{w}(k) = \sqrt{\frac{1 - \hat{C}_{DFT}(k)}{1 - \hat{C}_{PFC}(k)}}$

* PFC applications

Grain boundary melting

Mellenthin, Karma, Plapp PRB (2008); Berry, Elder, Grant PRB (2008);

Strained films / Epitaxial growth

Wu, Voorhees PRB (2009); Elder, Katakowski, Haataja, Grant PRL (2002) Huang, Elder PRB (2010), PRL (2009);

Strength of polycrystals

Stefanovic, Haataja, Provatas PRL (2006), PRE (2009); Hirouchi, Takaki, Tomita Comput. Mater. Sci. (2009) Elder, Grant PRE (2004); Elder, Katakowski, Haataja, Grant PRL (2002);

Surface ordering and growth

Achim, Ramos, Karttunen, Elder, Granato, Ala-Nissilä, Ying PRE (2010),(2009), (2008), (2006) Backofen, Voight, Witkowski PRE (2010); Muralidharan Haataja PRL (2010)

Solidification

Tegze, Granasy, Toth, Podmaniczky, Jaatinen, Ala-Nissilä, Pusztai PRL (2009) Van Teeffelen, Backofen, Voigt, Löwen, PRE **79**, 051404 (2009) Galenko, Danilov, Lebedev PRE (2009); Backofen, Ratz, Voigt Phil Mag (2007); Backofen, Voigt J. Cond. Mat. (2009); Berry, Elder, Grant PRE (2008)

Dislocation dynamics

Chan, Tsekenis, Dantzig, Dahmen, Goldenfeld, PRL (2010) Berry, Grant, Elder PRE (2006)

Kirkendall Effect Elder, Hoyt, Thornton Phil Mag (2010)

Overview

Part 1: Multiscale Modeling: Amplitude

PFC to Amplitude expansions

Phase field crystal —

 Amplitude

PFC free energy functional

$$\frac{\Delta \tilde{F}}{k_b T V \bar{\rho}} \approx \frac{R^d}{V} \int d\vec{r} \left[\frac{n}{2} \left[\Delta B + B^x \left[1 + \nabla^2 \right]^2 \right] n - t \frac{n^3}{3} + v \frac{n^4}{4} \right]$$

Amplitude formulation: a poor man's PFC

$$n = \sum_{\vec{G}} \left(\eta_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} + \eta_{\vec{G}}^* e^{-i\vec{G}\cdot\vec{r}} \right)$$

 $\vec{G} \equiv l\vec{q_1} + m\vec{q_2} + n\vec{q_3}$ $(\vec{q}_1, \vec{q}_2, \vec{q}_3) \equiv \text{ principle reciprocal lattice vectors}$ $(l,m,n) \equiv$ Miller indices

Goal – derive

$$\frac{\partial \eta_{\vec{G}}}{\partial t} = ?$$

* Amplitude expansion: multiple scales approximation

$$\frac{\partial \eta_{\vec{G}}}{\partial t} = ?$$

* Amplitude expansion: multiple scales approximation

"Quick and dirty" method, Goldenfeld, Athreya, Dantzig, PRE **72**, 020601 (2005)

More rigorous approaches, renormalization group, multiple scales perturbation analysis – similar results Athreya, Goldenfeld, Dantzig, PRE 74, 011601 (2006)

* Amplitude expansion: technical details

1) substitute $n = \sum \eta_{G} \exp(iG_{i}r) + c.c.$ into equation of motion

- 2) multiply by $exp(iG_mr)$ and integrate using 'quick + dirty' approx.
- 3) make 1 mode approximation

* Amplitude expansion: Two dimensions

2d: triangular lattice, principle reciprocal lattice vectors

$$\vec{q}_{1} = -\frac{1}{2} \left(\sqrt{3} \ \hat{x} + \hat{y} \right) ; \ \vec{q}_{2} = \hat{y}$$

$$\frac{\partial \eta_{j}}{\partial t} = \mathfrak{T}_{j} \frac{\delta F_{2d}}{\delta \eta_{j}^{*}} \approx - \left[\left(\Delta B + B^{x} \mathfrak{T}_{j}^{2} + 3v \left(A^{2} - |\eta_{j}|^{2} \right) \right) \eta_{j} - 2t \prod_{i \neq j} \eta_{i}^{*} \right]$$

$$F_{2d} = \int d\vec{r} \left[\frac{\Delta B}{2} A^2 + \frac{3v}{4} A^4 + \sum_{j=1}^3 \left[B^x |\Im_j \eta_j|^2 - \frac{3v}{2} |\eta_j|^4 \right] - 2t \left\{ \prod_{j=1}^3 \eta_j + c.c. \right\} \right]$$

where
$$A^2 \equiv 2 \sum |\eta_j|^2$$
, $\Im_j \equiv \nabla^2 + 2i \vec{q}_j \cdot \vec{\nabla}$

- → Now 6 equations (3 complex)
- \rightarrow Still includes elasticity, dislocations, multiple crystal orientations

Overview

Part 1: Multiscale Modeling: Continuum

Next: consider two limiting cases:

1) $\eta_j = \phi$ real number

2)
$$\eta_j = \phi e^{i\vec{G}_j\cdot\vec{u}}$$
,
where, \vec{u} = displacement field

* Continuum limit of amplitude equations **Limiting Case 1**) $\eta_i = \phi$ (real): substitute into free energy - F Free energy $\frac{F}{A} = \int d\vec{r} \left| 3\Delta B \phi^2 - 4t \phi^3 + \frac{45v}{2} \phi^4 + 6B^x \left| \vec{\nabla} \phi \right|^2 \right|$ where $\Delta B \equiv B^l - B^x$ **Surface energy** F **First order phase transition** $\Delta B > \Delta B_{melt}$ $\Delta B > \Delta B_{melt}$ liquid state $\phi = 0$ $\Delta B = \Delta B_{melt}$ $\Delta B < \Delta B_{melt}$ Crystalline state $\phi = \phi_{eq}$ $\Delta B < \Delta B_{melt}$ Minimize with respect to ϕ $\frac{d F/A}{d \phi} = 0 \quad \text{gives } \phi_{eq} = \frac{t + \sqrt{t^2 - 15 \Delta B v}}{15 v}$ ϕ_{eq}' ϕ_{eq}

* **Continuum limit of amplitude equations** <u>Limiting Case 1</u>) $\eta_i = \phi$ (real): substitute into free energy - F

Free energy
$$\frac{F}{A} = \int d\vec{r} \left| 3\Delta B \phi^2 - 4t \phi^3 + \frac{45v}{2} \phi^4 + 6B^x |\vec{\nabla}| \phi^2 \right|$$

where $\Delta B \equiv B^l - B^x$

Dynamics

$$\frac{\partial \phi}{\partial t} = - \frac{\delta F}{\delta \phi} = - 6 \left[\Delta B \phi - 2t \phi^2 + 15v \phi^3 - 2B^x \nabla^2 \phi \right]$$

Model A: non-conserved dynamics

Halperin/Hohenberg Rev. Mod. Phys. 49, 435 (1977)

* **Continuum limit of amplitude equations** <u>Limiting case 2</u>) $\eta_i = \phi e^{i\vec{G}_j \cdot \vec{u}}$, where, \vec{u} = displacement field

Small deformation limit

Write η_j as real amplitude and phase, i.e.,

$$\eta_j = \phi \exp(i\vec{G}_j \cdot \vec{u})$$

* **Continuum limit of amplitude equations** <u>Limiting case 2</u>) $\eta_j = \phi e^{i\vec{G}_j \cdot \vec{u}}$, where, \vec{u} = displacement field

Small deformation limit

 $\phi \rightarrow 1^{st}$ order liquid/solid transition, $\vec{u} \rightarrow$ continuum elasticity theory *i*

$$F_{2d} = \int d\vec{r} \left[3\Delta B \phi^2 - 4t \phi^3 + \frac{45}{2} v \phi^4 + 6B^x |\vec{\nabla} \phi|^2 + 3B^x \phi^2 \left[\frac{3}{2} \sum_{i=1}^2 U_{ii}^2 + U_{xx} U_{yy} + 2U_{xy}^2 \right] \right]$$

$$\underbrace{Ist \text{ order phase transition}}_{\text{1st order phase transition}} \underbrace{surface \text{ energy}}_{\text{(as before)}} \underbrace{Iinear \text{ elastic energy}}_{\text{elastic constants}} \underbrace{linear \text{ elastic constants}}_{C_{11}} = 9B^x \phi^2 C_{12} = C_{44} = C_{11}/3$$

Continuum elasticity

* Continuum limit of amplitude equations

Repeat for binary alloy model:

- substitutional binary alloy A and B atoms, densities $\rho_{_{\!A}}$ and $\rho_{_{\!B}}$ define two fields,

$$\psi = 2c - 1$$
, $n = (\rho - \rho_l)/\rho_l$, where $\rho \equiv \rho_A + \rho_B$, $c \equiv \rho_A/\rho$

- free energy (see Elder, Provatas, Berry, Stefanovic, Grant, PRB 75, 064107 (2007))

$$\frac{\Delta F}{k_B T \rho_l} = \int d\vec{r} \left[\frac{B'}{2} n^2 + B^x \frac{n}{2} \left[2R^2 \nabla^2 + R^4 \nabla^4 \right] n - \frac{t}{3} n^3 + \frac{v}{4} n^4 + \frac{\omega}{2} \psi^2 + \frac{u}{4} \psi^4 + \frac{K}{2} \left| \vec{\nabla} \psi \right|^2 \right]$$

usual PFC model

Model B/Cahn Hilliard

where $B^{l} = B_{0}^{l} + B_{1}^{l}\psi + B_{2}^{l}\psi^{2} + ... \rightarrow$ eutectics phase diagrams etc. $B^{x} = B_{0}^{x} + B_{1}^{x}\psi + B_{2}^{x}\psi^{2} + ... \rightarrow$ elastic moduli ~ function of ψ $R = R_{0} + R_{1}\psi + R_{2}\psi^{2} + ... \rightarrow$ lattice constant ~ function of ψ

- dynamics, for mobilities $\rm M_{_A}$ and $\rm M_{_B}$

$$\frac{\partial n}{\partial t} = M_1 \nabla^2 \frac{\delta F}{\delta n} + M_2 \nabla^2 \frac{\delta F}{\delta \psi}$$
$$\frac{\partial \psi}{\partial t} = M_2 \nabla^2 \frac{\delta F}{\delta n} + M_1 \nabla^2 \frac{\delta F}{\delta \psi}$$

where $M_1 \equiv (M_A + M_B)/\rho_l^2$ $M_2 \equiv (M_A - M_B)/\rho_l^2$

* Amplitude expansion: **Binary alloys, statics**

Small deformation limit $\eta_j = \phi \exp(i \vec{G}_j \cdot \vec{u})$

 $\psi \equiv$ concentration difference, $\phi \equiv$ liquid/solid order parameter Elder, Huang, Provatas, PRE, **81**, 011602 (2010)

* Amplitude expansion: Binary alloys, dynamics

Small deformation limit $\eta_j = \phi \exp(i \vec{G}_j \cdot \vec{u})$

 $\psi \equiv$ concentration difference, $\phi \equiv$ liquid/solid order parameter Elder, Huang, Provatas, PRE, **81**, 011602 (2010)

$$F_{2d} = \int d\vec{r} \left[3\Delta B \phi^2 - 4t \phi^3 + \frac{45}{2} v \phi^4 + 6B^x \left| \vec{\nabla} \phi \right|^2 + 3B^x \phi^2 \left\{ \frac{3}{2} \sum_{i=1}^2 U_{ii}^2 + U_{xx} U_{yy} + 2U_{xy}^2 \right\} + \left(\omega + 6B_2^l \phi^2 \right) \frac{\psi^2}{2} + \frac{u}{4} \psi^4 + \frac{K}{2} \left| \vec{\nabla} \psi \right|^2 + 12 \alpha B_0^x \left[-\phi \nabla^2 \phi + \sum_{i=1}^2 2U_{ii} \phi^2 \right] \psi \right]$$

Overview

Part 1: Multiscale Modeling

Part 2: Application: Surface ordering

nm objects ordering on µm scales

* Amplitude expansion: Two dimensions

2d: triangular lattice, principle reciprocal lattice vectors

$$\vec{q}_{1} = -\frac{1}{2} \left(\sqrt{3} \ \hat{x} + \hat{y} \right) ; \quad q_{2} = \hat{y}$$

$$\frac{\partial \eta_{j}}{\partial t} = \mathfrak{I}_{j} \frac{\delta F_{2d}}{\delta \eta_{j}^{*}} \approx -\left[\left(\Delta B + B^{x} \mathfrak{I}_{j}^{2} + 3v \left(A^{2} - |\eta_{j}|^{2} \right) \right) \eta_{j} - 2t \prod_{i \neq j} \eta_{i}^{*} \right]$$

$$F_{2d} = \int d\vec{r} \left[\frac{\Delta B}{2} A^2 + \frac{3v}{4} A^4 + \sum_{j=1}^3 \left[B^x |\Im_j \eta_j|^2 - \frac{3v}{2} |\eta_j|^4 \right] - 2t \left\{ \prod_{j=1}^3 \eta_j + c.c. \right\} \right]$$

where $A^2 \equiv 2 \sum |\eta_j|^2$

- → Now 6 equations (3 complex)
- → Still includes elasticity, dislocations, multiple crystal orientations

Next: applications of full model...

* Amplitude expansion: applications

Monolayer(s) ordering: Cu on Ru (0001)

Elder, Rossi, Kanerva, Sanches, Ala-Nissila, Elder, Ying, Granato in progress

two sublattices

strain $a^{Ru} = 2.70 \text{ Å}$ $a^{Cu} = 2.55 \text{ Å}$ $\epsilon = 5.6 \%$

Approximate: substrate = **fixed potential** of the form

$$\mathbf{V} = \mathbf{V}_o \left[\sum_{j} e^{i \vec{q}_j^{R_u} \cdot \vec{r}} + c.c. \right] \text{ add to F, i.e., } F = \int d \vec{r} \left[\frac{B^l}{2} n^2 + ... + \mathbf{V} n \right]$$

where $\vec{q}_{j}^{Ru} \equiv$ reciprocal lattice vectors for triangular lattice If $V_{o} > 0$ -- honeycomb substrate

- but Cu/Ru lattice mismatch
$$|\vec{q}_{j}^{Ru}| = \alpha |\vec{q}_{j}^{Cu}|$$

expand n in $|\vec{q}_{j}^{Ru}|$, i.e., $n = \sum_{j=1}^{3} \eta_{j} e^{i\vec{q}_{j}^{Ru}\cdot\vec{r}} + c.c.$
$$\frac{\partial \eta_{j}}{\partial t} = -\left[\left|\Delta B_{o} + B^{x}\Im_{j}^{2} + 3v\left|A^{2} - |\eta_{j}|^{2}\right|\right|\eta_{j} - 2t\prod_{i\neq j}\eta_{i}^{*} + V_{o}\right]$$
where $\Im_{j} \equiv \nabla^{2} + 2i\alpha \vec{q}_{j}^{Cu}\cdot\vec{\nabla} + 1 - \alpha^{2}$
misfit strain $\varepsilon = 1 - \alpha$

$$F_{2d} = \int d\vec{r} \left[\frac{\Delta B}{2} A^2 + \frac{3v}{4} A^4 + \sum_{j=1}^3 \left[B^x |\Im_j \eta_j|^2 - \frac{3v}{2} |\eta_j|^4 \right] - 2t \left[\prod_{j=1}^3 \eta_j + c.c. \right] + V_o \left(\sum_j \eta_j + c.c. \right) \right]$$

Uniform equilibrium states

minimize with respect to ϕ

Incommensurate Phase $\eta_j = \phi e^{i\delta \vec{q}_j \cdot \vec{r}} \quad \delta \vec{q}_j = \vec{q}_j^{Cu} - \vec{q}_j^{Ru} = (1 - \alpha)\vec{q}_j^f$

$$F_{I} = 3\Delta B \phi^{2} - 4t \phi^{3} + \frac{45v}{2} \phi^{4}$$

minimize with respect to $\phi \qquad \phi_{min} = \frac{t + \sqrt{t^{2} - 15v \Delta B}}{15v}$

$$F_{2d} = \int d\vec{r} \left[\frac{\Delta B}{2} A^2 + \frac{3v}{4} A^4 + \sum_{j=1}^3 \left[B^x |\Im_j \eta_j|^2 - \frac{3v}{2} |\eta_j|^4 \right] - 2t \left[\prod_{j=1}^3 \eta_j + c.c. \right] + V_o \left[\sum_j \eta_j + c.c. \right] \right]$$

Uniform equilibrium states

Commensurate Phase $\eta_j = \phi e^{i\theta}$ Incommensurate Phase $\eta_j = \phi e^{i(1-\alpha)\vec{q}_j^f \cdot \vec{r}}$

Cu^(a): surface energy $E_{111} \approx 0.6 \text{ ev/Atom} \left\{ \frac{E_{adh}}{E_{111}} \approx 5.7 \quad V_o^{Cu} \approx 5.7 \quad V_o^{*} \right\}$ Cu/Ru^(b): adhesion $E_{adh} \approx 3.4 \text{ eV/atom} \left\{ \frac{E_{adh}}{E_{111}} \approx 5.7 \quad V_o^{Cu} \approx 5.7 \quad V_o^{*} \right\}$

(a) Schimka, Harl, Stroppa, Gruneis, Marsman, Mittendorfer, Kresse, Nat. Mat. Lett (2010)(b) Ding, Deng, Lu, Jiang, Ru, Zhang, Qu, J. Appl. Phys. (2010)

Periodic equilibrium states

Length scale? Natural length scale

Monolayer ordering, Length scales, Cu

40 nm

Monolayer ordering, Comparison with experiment

Günther, Vrijmoeth, Hwang and Behm, PRL 74, 754 (1995): Cu/Ru(0001)

STM images

4.0 nm

Three monolayers: triangular

Four monolayers: honeycomb

14.1 nm

Monolayer ordering, Length scales, Cu

Monolayer ordering, Comparison with experiment

Monolayer ordering, **Dynamics: Adding Layers**

Monolayer ordering, **Dynamics**, **annealing** - **stripes**

 $V_0 = 3.25 \times 10^{-3}$

Monolayer ordering, Dynamics, annealing - triangles

 $V_0 = 0.87 \times 10^{-3}$

Monolayer ordering, Dynamics, triangles $V_o = 0.87 \times 10^{-3}$

Monolayer ordering, Dynamics, triangles $V_o = 0.87 \times 10^{-3}$

$$\sum \eta_j + cc$$

Günther, Vrijmoeth, Hwang and Behm, PRL **74**, 754 (1995): Cu/Ru(0001)

70 nm

Monolayer ordering, Dynamics: honeycomb

 $V_0 = 0.43 \times 10^{-3}$

Monolayer ordering, Dynamics, honeycomb $V_0 = 0.43 \times 10^{-3}$

39.4 nm

Günther, Vrijmoeth, Hwang and Behm, PRL **74**, 754 (1995): Cu/Ru(0001)

Monolayer ordering, partially filled 2nd layer

Schmid, Bartelt, Hamilton Carter, Hwang, PRL, **78**, 3507 (1997)

68.5 nm

Monolayer ordering, partially filled 2nd layer

Schmid, Bartelt, Hamilton Carter, Hwang, PRL, **78**, 3507 (1997)

68.5 nm

¹⁴⁴ nm

)akland

Monolayer ordering: comparison with experiment

Günther, Vrijmoeth, Hwang and Behm, PRL 74, 754 (1995): Cu/Ru(0001)

Amplitude model

1) **reproduces** experimental patterns assuming $V_{o} \sim 1/(\# \text{ layers})$

2) implies sample preparation critical

- Shockley partial dislocations

