Development of High Strength Steels utilizing interphase precipitation

Yoshimasa Funakawa Steel Research laboratory JFE Steel Corporation

29th, March, 2008

Contents

Hot-rolled ferritic steel precipitate-strengthened by ultra fine carbides in row

Feature of nanometer-sized carbides in row

 \succ Carbides formation during $\gamma \rightarrow \alpha$ transformation

> Thermal stability of nanometer-sized carbides

Hot-rolled steel sheet strengthened with interface precipitated ultra fine carbides

(1)Ferrite matrix

Chemical composition: 0.04%C-0.2%Si-1.6%Mn-0.08%Ti-0.2Mo

Ultra fine carbides

Amount of strengthening by ultra fine carbide

Chemical composition : 0.04%C-0.2%Si-1.6%Mn-0.08%Ti-0.2Mo

Transformation temperature

Chemical composition : 0.04%C-0.2%Si-1.6%Mn-0.08%Ti-0.2Mo

Ar₃ transformation temperature is in the range from 600° C to 650° C.

Spacing between layers of TiC

In the case of NbC, Model after Gray

S.Freeman; ISI Special Report No.145,(1971), 152.

J.M.Gray and R.B.G.Yeo; Trans. ASM, Vol.61(1968), 255.

Experimental procedure

Table Chemical compositions of steels investigated(mass%).

	С	Si	Mn	Р	S	N	Ti	Мо	Nb
Steel A	0.04	0.01	1.3	0.005	0.001	0.0025	0.1	0.2	Ι
Steel B							0.2	-	Ι
Steel C							0.1	-	0.18
Steel X							tr	0.2	Ι
Steel Y							0.1	_	_

Ultra fine carbide in samples

•Lattice structure: NaCl type

•Relationship for matrix: $\{100\}_{carbide}//\{100\}_{\alpha}$, $\langle 110 \rangle_{carbide}//\langle 100 \rangle_{\alpha}$ (Baker-Nutting)

Change in hardness with heating at 650°C

Ostwald ripening

Ostwald ripening

$$r^3 - r_0^3 = \left(\frac{8\gamma DC_{\infty}\Omega^2}{9RT}\right)t^3$$

r: carbide diameter after coarsening, r0: carbide diameter before coarsening,

R: Gas constant, T: absolute temperature

 γ : interfacial energy, D: diffusion coefficient,

1

 $\textbf{C}_{\infty} : \textbf{concentration of solid solution element, } \Omega : volume of 1 mol$

Amount of solid solution element

Carbide coarsening by high temperature heating

Composition of carbide in steel A changed

while that in steel C did not change.

Relationship between amount of carbide former and the rate of coarsening

Retarding of carbide coarsening by controlling of amount of Ti in solution.

Fin.