

The 155th ISIJ meeting (2008.3.28) International organized session "Effects of alloying elements on microstructure formation in steels and other materials"

Incomplete transformation of bainite in microalloyed high strength low alloy steels

<u>T. Furuhara</u>, K. Takahashi, G. Miyamoto Inst. Mater. Res., Tohoku Univ., Japan

Industrial importance of bainitic steel - example

Welded structural steels e.g., Bridge, Building, Vessel, Pipeline etc.

- Decrease in carbon content down to less than 0.1mass% for better weldability
- Use of bainitic structure to obtain high strength

Microalloying (B, Mo, Nb) for increasing in hardenability

but increase in the amount of MA

Nb bearing steel - Incomplete transformation of bainite

Transformation stasis (Incomplete transformation)

Bainite transformation in Si-added steels

(Objective) To clarify effects of microalloying (Nb, Mo, B) on transformation behavior of Fe-low C-1.5Mn steels

(Experimental)

Materials & Heat treatment

Fe-(0.05, 0.15)C-1.5Mn -0.2Si-(0, 0.030)Nb (mass%)

Isothermal holding : 723 ~ 973 K ~86.4ks

Fe-(0.05, 0.15)C-1.5Mn -(0, 0.5)Mo - (0, 0.001)B

Isothermal holding : 773 ~ 873 K ~ 1036.8 ks

<u>Microstructure observation</u> : OM, SEM, TEM <u>Measurement of phase fraction</u> : Point counting method

Effect of Nb addition

Isothermal transformation (OM)

PF : Polygonal Ferrite P :Pearlite M : Martensite B : Bainite MA :Martensite-Austenite constituent

Fe-0.15C-1.5Mn (Nb free alloy)

0.03%Nb added alloy

973K

823K

Fe-0.15C-1.5Mn-(0, 0.03Nb), transformed at 773K

Fe-0.15C-1.5Mn-(0, 0.03Nb), transformed at 853K

Fe-0.15C-1.5Mn-0.03Nb transformed at 853K for 10.8ks (TEM)

BF : Bainitic Ferrite P :Pearliteα : Ferrite θ: CementiteMA :Martensite-Austenite constituent

Dislocation-free ferrites of new orientations containing θ forms after the stasis.

Fe-0.05C-1.5Mn alloys, transformed at 853K

Mechanism for transformation stasis with Nb addition

Suppression of ferrite transformation with Nb addition

On nucleation

Decrease in γ grain bounday energy with Nb segregation (M. Enomoto, N. Nojiri, Y. Sato: Mater. Trans., JIM, 35 (1994), 859)

Decrease in BF/ γ bounday energy with Nb segregation

On growth

Solute drag effect by Nb

(M. Suehiro, Z. -K. Liu, J. Ågren: Acta Mater., 44 (1996), 4241)

Decrease in diffusion coefficient of carbon

(S. Nanba, H. Morimoto, G. Anami, T. Towada:

Kobe steel Eng. Rep., 47 (1997), 8)

Pinning by Nb(C,N) precipitation

Effect of (B, Mo) addition

Isothermal transformation at 873K (OM)

BF: Bainitic Ferrite, α: Ferrite MA: Martensite-Austenite constituent P: Pearlite M(A): Mertensite(untransformed austenite)

Isothermal transformation at 823K (OM)

BF: Bainitic Ferrite θ: Cementite Martensite-Austenite constituent M(A): Martensite (untransformed austenite) P: Pearlite DP: Degenerate Pearlite

TEM microstructure transformed at 823K

BF: Bainitic Ferrite MA: Martensite-Austenite constituent α : Ferrite θ : Cementite M₂₃C₆ carbide

Isothermal transformation at 773K (SEM)

BF: Bainitic Ferrite MA: Martensite-Austenite constituent θ: Cementite DP: Degenerate Pearlite

Incomplete transformation by Mo addition

873K, 823K: Carbide-free BF formation \rightarrow Stasis

Restart by α formation at 873K by $M_{23}C_6$ precipitation at 823K

773K: Bainite transformation with cementite (no stasis)

(Summary)

- 1. A transformation stasis in upper bainite transformation appears in Mn-containing low-alloy low-carbon steels microalloyed with Nb and Mo.
- 2. Dislocation-free ferrites of which orientations are often different from those of adjacent BFs form with carbide precipitation after the stasis.
- 3. Mo or Nb in solution suppress the nucleation of ferrite at BF/γ interphase boundary in a temperature range where the incomplete transformation of bainite occurs.