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Kinetics of diffusional phase transformations

One-dimensional system of unit cross-sectional area



Total Gibbs energy in the system

2

1

chem
1m

1 d
zN

i i
i z

g x z
V

ϕ ϕ ϕμ
=

= ⋅∑ ∫

1( ,  ... , , )i i Nx x Tϕ ϕμ μ=

Chemical potential of component i in phase ϕ: 

Total chemical Gibbs energy in a system of ϕ = α, β, γ, ... phases, 
each consisting of i = 1, .. , N components.

The total Gibbs energy of the system generally also consists of a mechanical part
related to the elastic energies . 1 :
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• Incoherent or partly coherent interfaces, no external stresses
• Relaxation by a vacancy mechanism. 



Balance relations
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F.D. Fischer, N.K. Simha: ”Influence of material fluxes on the jump relations 
at a singular interface in a multicomponent solid” Acta Mech. 171 (2004) 213.

Applying divergence and transport theorem and
volumes of S1 → 0 and S2 → 0. 

Mass balances



Dissipation at the sharp interface
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… mathematical construct – mole fraction?

F.D. Fischer, N.K. Simha: ”Influence of material fluxes on the jump relations 
at a singular interface in a multicomponent solid” Acta Mech. 171 (2004) 213.
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M. Hillert, M. Rettenmayr: ”Deviation from local equilibrium at migrating phase interfaces”
Acta Mater. 51 (2003) 2803.

Is the concept of trans-interface diffusion in the framework
of a  sharp interface model required (allowed)?!

M. Hillert: ”Overview No.135. Solute drag, solute trapping and diffusional dissipation of Gibbs energy”
Acta Mater. 47 (1999) 4481. 



Contact conditions I

• Local equilibrium contact conditions

A diffusional phase transformation with N components is a problem that comprises
(2N-1) indepenent variables at the interface.

N-1 … independent fluxes or mole fractions in the parent (old) phase
N-1 … independent fluxes or mole fractions in the new phase

1 … interface velocity

[[ ]] 0,  1,  ... ,  i i Nμ = = m 1,2,..., i ix V v = j , i = N

• Paraequilibrium contact conditions

N c.c. (N-1) m.b.
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Contact conditions II

• No substitutional diffusion

• „Equal jump“ contact condition

Non-equilibrium concepts (finite, intrinsic interface mobility?!)M
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Non-equilibrium (No substitutional diffusion)



„Equal jump“ contact conditions



„Equal jump“ contact conditions



Derivation of the „equal jump“ conditions
by the thermodynamic extremal principle
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Energy balance

Thermodynamic extremal principle
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Volumes of S1 → 0 and S2 → 0.
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Intrinsic and effective interface mobility
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⎝ ⎠J. Svoboda, F. D. Fischer, E. Gamsjäger: “Influence of 
solute segregation and drag on properties of migrating 
interfaces”, Acta mater., 50, 967-977, 2002.



E. Kozeschnik, E. Gamsjäger, “High-Speed Quenching Dilatometer Investigation of the Austenite to Ferrite Transformation 
in low to ultra low carbon steel”, Metall. Mater. Trans. 37A (2006) 1791-1797.
E. Gamsjäger: “Kinetics of the austenite-to-ferrite phase transformation – From the intrinsic to an effective mobility”, 
Materials Science Forum 539-543 (2007) 2570-2575.

Comparison: Theory and experiment

Non – equilibrium
No substitutional diffusion



E. Gamsjäger, J. Svoboda, F.D. Fischer: “Austenite-to-ferrite phase in low-alloyed steels”, Comp.Mat. Sci. 32 (2005) 360-369.

a = 96 μm, XC = 0.0078, XMn = 0.0075.

*F. Fazeli, M. Militzer; Modelling the effects of alloying elements on the ferrite transformation kinetics, 
44th Mechanical Working and Steel Processing Conf. Proc., 2002.

Comparison with experimental data*
Fe-C-Mn (ϑ = 735°C)

Non – equilibrium
No substitutional diffusion



Comparison with experimental data
Fe-C-Mn (ϑ = 745°C)



Comparison with experimental data
Fe-C-Mn (ϑ = 755°C)



Comparison with experimental data
Fe-C-Mn (ϑ = 765°C)

Non – equilibrium
Mn-spike diffusion



Mobility and diffusion controlled growth: 
Fe-Mn-Profiles (T = 1123K) 

„Equal jump“ contact condition



„Quasi-thick“ interface
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E. Gamsjäger: “A Note on the Contact Conditions at Migrating Interfaces”, accepted for publication, Acta mater., 2007.
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Results of the „quasi-thick“-interface approach
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“Quasi-thick”-interface – descriptive way to visualize the situation at a sharp interface. 

“Quasi-thick”-interface – is consistent with the “equal jump”-condition. 

Limitations of the sharp interface approach 
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Fluxes inside the interface cannot be considered.
⇒

Contact conditions at real interfaces ≠
Contact conditions at ideally sharp interfaces



Applicability of the sharp interface model

Solid-liquid phase transformations – yes

Solid-solid transformation – yes, 
if dissipation by diffusion processes in the interface is negligible.



Solid-liquid phase transformation

M. Rettenmayr, O. Warketin, M. Rappaz, H. E. Exner: “Simulation of solutal remelting”, Acta mater..49 (2001) 2499-2510.
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Fig 3: Interface velocity: = 0.204, = 883K.x T Mg 

Experimental data

Time-temperature data ⇒ heat balance equation ⇒ time vs. velocity



Interface velocity for three different interface mobilities.

Calculations

Local equilibrium is reached at very small transformation times.

„Equal jump“ contact condition



Solid-liquid transformation in the Al-Mg system
xn = 0.15, xo = 0.05, T = 883K

The mole fractions xo, xn and xI are depicted versus the spatial variable z (grey lines). 
The mole fraction profiles are plotted at different transformation times.



Solid-liquid transformation in the Al-Mg system
xn = 0.15, xo = 0.05, T = 883K

The time-dependent evolution of the mole fractions xo and xI at three interface different interface mobilities M.



Solid-liquid transformation in the Al-Mg system
xn = 0.15, xo = 0.05, T = 883K

The jumps of the chemical potentials, [[μAl]] and [[μMg]] vs. time.



Solid-liquid transformation in the Al-Mg system
xn = 0.15, xo = 0.05, T = 883K

Calculated molar Gibbs energy diagram for a certain deviation from local equilibrium (t = 1μs).
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Thick interface - steady state solutions

J. Svoboda, J. Vala, E. Gamsjäger, F.D. Fischer, Acta mater. 54 (2006) 3953-3960.



Thick interface – weight functions



Temperature dependence of the interface velocity v for 
different values of the interface thickness h.



Thick interface – Cr-Profile



Thick interface – Ni-Profile



Conclusions and Outlook

• Sharp interface – equal jump contact conditions

• Thick interface with zero fluxes can describe a sharp interface ⇒
Trans-interface diffusion is not required for a sharp interface

• Comparison of modelling results with experimental data

• Thick interface – steady state solutions

• Thick interface model – general solution

Next goal:



The mole fractions xo, xn and xI are depicted versus the spatial variable z (grey lines). 
The mole fraction profiles are plotted at different transformation times. 

Solid-liquid transformation in the Al-Mg system
Case I: xn = 0.15, xo = 0.03, T = 883K



Solid-liquid transformation in the Al-Mg system
Case I: xn = 0.15, xo = 0.03, T = 883K

The time-dependent evolution of the mole fractions xo and xI at three interface different interface mobilities M.



Solid-liquid transformation in the Al-Mg system
Case I: xn = 0.15, xo = 0.03, T = 883K

The jumps of the chemical potentials, [[μAl]] and [[μMg]] vs. time.



Solid-liquid transformation in the Al-Mg system
Case I: xn = 0.15, xo = 0.03, T = 883K

Calculated molar Gibbs energy diagram for a certain deviation from local equilibrium (t = 1μs).
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