

ALEMI-Meeting Effects of alloying elements on migrating interfaces

From extremum principles in materials science to the kinetic coefficients such as the interface mobility

Ernst Gamsjäger **Montanuniversität Leoben, Institute of Mechanics, Austria**

ALEMI 20106. Juni 2010, Avignon, France

- \blacksquare *Thermodynamics of irreversible processes*
	- \triangleright Relation between conjugate fluxes and forces
	- \triangleright Principle of maximum dissipation

Application of maximizing the Gibbs energy dissipation

- Example I: Electric circuit
- Example II: A migrating thick interface

\blacksquare *Interface mobility*

 \triangleright Estimation of the intrinsic mobility

Transport processes for systems out of global equilibrium are aimed to be described.

We need: complete set of extensive, independent variables A_i .

We define: Conjugate fluxes J_i and conjugate forces X_i .

$$
J_i = dA_i / dt
$$

$$
X_i = \partial S / \partial A_i
$$

 $2nd$ law in terms of the local entropy production \mathcal{Y} .

$$
\qquad \qquad \longrightarrow \qquad \boxed{\varPsi = \sum_i J_i X_i \ge 0}
$$

Each conjugate flux J_i is a linear combination of all forces X_i :

$$
J_i = \sum_i L_{ij} X_j
$$

with Onsager's reciprocal relations

$$
\overline{L_{ij} = L_{ji}}
$$

Onsager 1931 (Equations for heat conduction) Onsager 1945 (Equations for diffusion) Svoboda & Turek 1991 (Evolution equations for characteristic variables *qi*)

Closed system, isothermal and isobaric process: appropriate thermodynamic potential: Gibbs energy $G(q_1, ..., q_N)$

Assumption: Dissipation *Q* **of Gibbs energy is a quadratic form** of N rates q_i of the characteristic variables q_i . $Q = \sum_{i=1} \sum_{k=1} B_{ik} \dot{q}_i \dot{q}_k$

 B_{ik} considers the kinetic parameter of the material (diffusion coefficients) and the geometry of the system.

Principle of maximum dissipation *Q* **of the Gibbs energy**

$$
\dot{G} = \sum_{i=1}^{N} \frac{\partial G}{\partial q_i} \dot{q}_i
$$
\n
$$
Q = \sum_{i=1}^{N} \sum_{k=1}^{N} B_{ik} \dot{q}_i \dot{q}_k
$$

The extremal principle asserts that the rates \dot{q}_i of the characteristic **variables correspond to a maximum of the Gibbs energy dissipation** \bm{Q} constrained by the energy balance $\bm{Q} = -\bm{G}$ and by \bm{m} further **constraints.** —Ċ

$$
\frac{\sum_{i=1}^{N} a_{ik}(q_1, ..., q_N)\dot{q}_i = 0}{\partial \dot{q}_i} \left[Q + \lambda \left(Q + \dot{G} \right) + \sum_{k=1}^{m} \beta_k \sum_{i=1}^{N} a_{ik}\dot{q}_i \right] = 0
$$
\n
$$
\frac{\partial}{\partial \dot{q}_i} \left[\dot{G} + \frac{Q}{2} + \sum_{k=1}^{m} \beta_k \sum_{i=1}^{N} a_{ik}\dot{q}_i \right] = 0
$$
\n
$$
\sum_{j=1}^{N} B_{ij}\dot{q}_j + \sum_{k=1}^{m} a_{ik}\beta_k = -\frac{\partial G}{\partial q_i}
$$

John Ågren's comparison

Newton's laws of motion vs. Hamilton and Lagrange Balance of driving forces vs. Extremal principle

Application of the principle I Electric circuits

Electric circuits (Maple8)

===== Gibbs energy dissipation Q ===================== $>$ Q:=R1*I1^2+R2*(I2)^2+R3*(I3)^2; $Q := R I I I^2 + R 2 I 2^2 + R 3 I 3^2$ $====$ Rate of the Gibbs energy ========================= $>$ Gdot: =- $U1*I1-U2*I2$; $Gdot := -UI \, II - U2 \, D$ $====$ Method of Lagrange using two constraints $========$ $>$ extrema(Q, {Gdot+Q, I1-I2-I3}, {I1, I2, I3}, 's'): $>$ s; $\{ \{I2 = 0, II = 0, IS = 0 \}, \{I2 = \frac{R3 U2 + R3 U1 + R1 U2}{R3 R2 + R1 R2 + R3 R1}, II = \frac{R3 U2 + U1 R2 + R3 U1}{R3 R2 + R1 R2 + R3 R1}, I2 = \frac{R3 U2 + U1 R2 + R3 U1}{R3 R2 + R1 R2 + R3 R1}, I2 = \frac{R3 U2 + U1 R2 + R3 U1}{R3 R2 + R1 R2 + R3 R1}, I2 = \frac{R3 U2 + U1 R2 + R3 U1}{R3 R2 + R1 R2 + R3 R1}, I2 = \frac{R3 U2 + U1 R2 + R3$ $I3 = -\frac{-UI R2 + R1 U2}{R3 R2 + R1 R2 + R3 R1} \}$ ===== Check with Kirchhoff's current and voltage laws ======== $>$ solve({R1*I1+R3*I3=U1, R2*I2-R3*I3=U2,I1-I2-I3=0}, {I1,I2,I3}); $\{I2 = \frac{R3 U2 + R3 U1 + R1 U2}{R3 R2 + R1 R2 + R3 R1}, II = \frac{R3 U2 + U1 R2 + R3 U1}{R3 R2 + R1 R2 + R3 R1},$ $I3 = -\frac{-UI R2 + R1 U2}{R3 R2 + R1 R2 + R3 R1}$

Mathematic formulation

- **can be applied in several fields in a similar manner (mathematics, physics, biology, materials science…)**
- **Symbolic computation.**
- *Results*
	- **contribute to the insight of the considered phenomenon.**
	- **provide the solution of a technical problem.**

Application to diffusive phase transformations

Transformation kinetics depends on:

- 1, Diffusion of the components in the bulk material,
- 2, the rearrangemen^t of the lattice and
- 3, on diffusion in the interface.

1: Dictra

 $1 + 2$: first results are published.

 $1 + 2 + 3$: current research.

Parabola describing the interface thickness. Additional state parameters x_{iC}

 \Rightarrow Evolution equation for the fluxes and the rates of the mole fractions

M. Militzer, Austenite decomposition kinetics in advanced low carbon steels, Solid Phase Transformations 99, eds. M. Koiwa, K. Otsuka and T. Miyazaki, JIM, Sendai (1999) 1521-1524.

E. Gamsjäger, M. Militzer, F. Fazeli, J. Svoboda, F. D. Fischer: "Interface mobility in case of the austenite-to-ferrite phase transformation", *Comp. Mat. Sci*, **37** (2006) 94-100.

$$
v = M_{\text{eff}} \Delta f
$$
\n
$$
M = \boxed{M_0} \cdot \exp\left(-\frac{Q_M}{RT}\right)
$$
\n
$$
M_0 = 4800 \text{ mol} \cdot \text{s} \cdot \text{kg}^{-1} \cdot \text{m}^{-1}
$$
\n
$$
M_0 = 0.058 \text{ mol} \cdot \text{s} \cdot \text{kg}^{-1} \cdot \text{m}^{-1}
$$
\n
$$
M_0 = (6 - 15) \text{ mol} \cdot \text{s} \cdot \text{kg}^{-1} \cdot \text{m}^{-1}
$$
\n
$$
M_0 = (6 - 15) \text{ mol} \cdot \text{s} \cdot \text{kg}^{-1} \cdot \text{m}^{-1}
$$
\n
$$
M_0 = \frac{1}{2} \cdot \text{kg}^{-1} \cdot \text{m}^{-1}
$$
\n
$$
M_0 = 2.058 \text{ mol} \cdot \text{s} \cdot \text{kg}^{-1} \cdot \text{m}^{-1}
$$
\n
$$
M_0 = (6 - 15) \text{ mol} \cdot \text{s} \cdot \text{kg}^{-1} \cdot \text{m}^{-1}
$$
\n
$$
M_0 = \frac{1}{2} \cdot \text{Gams} \cdot \text{Kinel, S.} \cdot \text{Gauss} \cdot \text{M, M, H, S.} \cdot \text{M, M, H, S.
$$

Effective interface mobility as a result of the tetrakaidecahedron model

Experiment 2: Fe-C-alloy 1. stage and 2. stage

E. Kozeschnik, E. Gamsjäger, *Metall. Mater. Trans.* **37A** (2006) 1791-1797.

Intrinsic interface mobility *M* **A literature survey**

Conclusions and Outlook

- **Extremum principle (applicable to equilibrium and to processes not too far away)**
	- $\frac{1}{2}$ **Equilibrium conditions and evolution equations**
	- ❖ **Thick interface simulation**

Estimation of the intrinsic mobility

 $\frac{1}{2}$ Evaluation of experimental data by transformation models.

Next tasks:

- \rightarrow Application of the principle of maximum dissipation to further problems in materials science.
- \rightarrow Comparison with experimental results