

12th AIEMI Workshop: Delft University of Technology, June 24 & 25, 2013

The cyclic phase transformation concept and the effective interface mobility

E. Gamsjäger¹, Hao Chen², Sybrand van der Zwaag²

¹Montanuniversität Leoben, Institute of Mechanics, Leoben, Austria. ²Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands.

Contents

Motivation

Diffusive phase transformations

(e.g. solid / liquid or solid/solid phase transformations)

• Model 1 (LE)

Modeling and experimental observations

Model 2 (thick interface) / Model 3 (effective interface mobility)

Theory and modeling results

• Model 1 / Model 3

Cyclic phase transformations

Conclusions and Outlook

Theory

Model 1: Sharp interface, infinite mobility LE(NP)

From: C. R. Hutchinson, H. S. Zurob, Y. Bréchet: Metall. Mater. Trans. (37A) 2006, 1711-1720.

Ferrite layer growth kinetics during decarburization of an Fe-0.57C (mass frac. in %) binary alloy at 850°C and 825°C.

From: A. Béché, H. S. Zurob, C. R. Hutchinson: Metall. Mater. Trans. (38A) 2007, 2950-2955.

Ferrite layer growth kinetics during decarburization of an Fe-0.58C-2.0Cr (mass frac. in %) alloy at 806°C and 775°C.

From: A. Béché, H. S. Zurob, C. R. Hutchinson: Metall. Mater. Trans. (38A) 2007, 2950-2955.

Model 2: Thick interface parametric model

J. Svoboda, E. Gamsjäger: "Modelling of diffusive and massive phase transformations in binary systems – thick interface parametric model", *Int. J. Mater. Res.* **102** (2011) 666-673.

Model 2: Fe-Mn system

E. Gamsjäger, R.E. Werner, W. Schiller, B. Buchmayr, Steel Res. Int. (2013), in press.

Model 2: Fe-Mn system

Model 3: Fe-Mn-C system

E. Gamsjäger, J. Svoboda, F.D. Fischer: "Austenite-to-ferrite phase in low-alloyed steels", Comput. Mater. Sci. 32 (2005) 360-369.

E. Gamsjäger, R.E. Werner, W. Schiller, B. Buchmayr : Steel Res. Int. (2013) in press.

Novel experimental approach: Cyclic phase transformations

I-type exeriment H-type exeriment austenitization austenitization temperature T_2 T_2 temperature T_1 T₁ A 1 A₁ time time

H. Chen, B. Appolaire, S. van der Zwaag : Acta Mater. 59 (2011) 6751-6760.

H. Chen, B. Appolaire, S. van der Zwaag : Acta Mater. 59 (2011) 6751-6760.

Novel experimental approach: Cyclic phase transformations

H. Chen, B. Appolaire, S. van der Zwaag : Acta Mater. 59 (2011) 6751-6760.

Alloy A:

E. Gamsjäger, H. Chen, S. van der Zwaag: in preparation.

Alloy B:

local equilibrium; — effective mobility

E. Gamsjäger, H. Chen, S. van der Zwaag: in preparation.

Alloy C:

local equilibrium; — effective mobility

E. Gamsjäger, H. Chen, S. van der Zwaag: in preparation.

Different cooling rates:

Different heating rates:

$$M_{\rm eff} = M_0 \cdot \exp\left[\frac{1}{RT} \left(-Q + a(T - T_{\rm S})\right)\right] \qquad Q = 140 \cdot 10^3 \,\rm{J} \,\,mol^{-1} \,\,\rm{K}^{-1}$$

Table 1: Coefficients for the different model alloys

	9 - range	$T_{\rm S}/{ m K}$	$M_0/{\rm m}^2~{\rm s~kg^{-1}}$	$a / J \text{ mol}^{-1} \text{ K}^{-1}$	Composition	
$\alpha \rightarrow \gamma$	$864.85^{\circ}C \le 9$	1138	$7 \cdot 10^{-8}$	$1.2 \cdot 10^{3}$	$w_{\rm Mn} = 10^{-3};$	
	$\mathcal{G} \leq 889.85^{\circ}\mathrm{C}$				$w_{\rm C} = 2 \cdot 10^{-4}$	
$\gamma \rightarrow \alpha$	$864.85^{\circ}C \le 9$	1138	1.10-5	$-1.2 \cdot 10^3$	$w_{\rm Mn} = 10^{-3};$	
	$\mathcal{G} \leq 889.85^{\circ}\mathrm{C}$				$w_{\rm C} = 2 \cdot 10^{-4}$	
$\alpha \rightarrow \gamma$	$857.85^{\circ}C \le \mathcal{G}$	1131	2.3.10-8	$1.2 \cdot 10^{3}$	$w_{\rm Mn} = 2 \cdot 10^{-3};$	
	$\mathcal{G} \leq 882.85^{\circ}\mathrm{C}$				$w_{\rm C} = 2 \cdot 10^{-4}$	
$\gamma \rightarrow \alpha$	$857.85^{\circ}C \le \mathcal{G}$	1131	$1.4 \cdot 10^{-6}$	$-1.2 \cdot 10^3$	$w_{\rm Mn} = 2 \cdot 10^{-3};$	
	$\mathcal{G} \leq 882.85^{\circ}\mathrm{C}$				$w_{\rm C} = 2 \cdot 10^{-4}$	
$\alpha \rightarrow \gamma$	$852.85^{\circ}C \leq \mathcal{G}$	1126	$1.4 \cdot 10^{-8}$	$1.2 \cdot 10^{3}$	$w_{\rm Mn} = 3 \cdot 10^{-3};$	
	$\mathcal{G} \leq 877.85^{\circ}\mathrm{C}$				$w_{\rm C} = 2 \cdot 10^{-4}$	
$\gamma \rightarrow \alpha$	$852.85^{\circ}C \leq \mathcal{G}$	1126	1.10-6	$-1.2 \cdot 10^3$	$w_{\rm Mn} = 3 \cdot 10^{-3};$	
	$\mathcal{G} \leq 877.85^{\circ}\mathrm{C}$				$w_{\rm C} = 2 \cdot 10^{-4}$	

Effective mobility

Comparison with experimental data

M. Militzer, Austenite decomposition kinetics in advanced low carbon steels, Solid Phase Transformations 99, eds. M. Koiwa, K. Otsuka and T. Miyazaki, JIM, Sendai (1999) 1521-1524.

E. Gamsjäger, M. Militzer, F. Fazeli, J. Svoboda, F. D. Fischer: "Interface mobility in case of the austenite-to-ferrite phase transformation", *Comp. Mat. Sci*, (2006) 94 -100.

Comparison with experimental data

[1] M. Hillert, L. Höglund, Scrip. Mater. (2006), 54, 1259-1263.[2] E. Gamsjäger, Habilitation treatise (2008), Montanuniversität Leoben

Conclusions and Outlook

- Thick interface parametric model
 - Substitutional diffusion in the interface
 - ➤ C-diffusion in bulk

- Simplified model
 - > Comparison with experimental results.
- Prediction of the γ / α transformation kinetics
 - Effective mobility as a function of composition and temperature by comparison with LE-model and experiments.

Transformation kinetics depends on:

- 1, Diffusion processes of the components in the bulk materials,
- 2, the rearrangement of the lattice and
- 3, on diffusion processes in the interface.

2+3: interfacial reaction

Gibbs energy G and dissipation Q

$$G = \frac{1}{\Omega} \int_{-\Delta_{L}-h}^{\Delta_{R}} \left(x\mu_{1} + (1-x)\mu_{2} \right) dz = \underbrace{\frac{1}{\Omega}}_{-\Delta_{L}-h} \int_{-\Delta_{L}-h}^{0} \left(x\mu_{1} + (1-x)\mu_{2} \right) dz + \underbrace{\frac{1}{\Omega}}_{0} \int_{0}^{\Delta_{R}} \left(x\mu_{1} + (1-x)\mu_{2} \right) dz}_{G^{\beta}}$$

$$Q = RT\Omega \int_{-(\Delta_{L}+h)}^{\Delta_{R}} \left(\frac{1}{xD_{1}} + \frac{1}{(1-x)D_{2}} \right) j^{2} dz$$

$$\downarrow$$

$$G = G(x_{L}, x_{R}, A, \Delta_{R})$$

$$Q = Q(\dot{x}_{L}, \dot{x}_{R}, \dot{A}, v)$$

$$\frac{1}{2} \frac{\partial Q}{\partial \dot{x}_{L}} = -\frac{\partial G}{\partial x_{L}}$$

$$\frac{1}{2} \frac{\partial Q}{\partial \dot{x}_{R}} = -\frac{\partial G}{\partial x_{R}}$$

$$\frac{1}{2} \frac{\partial Q}{\partial v} = \frac{\partial G}{\partial \Delta_{R}}$$

$$\frac{1}{2} \frac{\partial Q}{\partial \dot{A}} = -\frac{\partial G}{\partial A}$$

Experimental setup

- 1... Heated specimen
- 2 ... Electric supply for the thermocouple
- 3 ... Cu jaws

Composition, heat treatment and microstructure

Table: Composition of the 10MnSi7 steel grade

	С	Mn	Si	Р	S	Cr	Ni	Al	Ti	V	Nb
$x_i \cdot 100$	0.4173	1.6259	1.9802	0.0219	0.0124	0.0318	0.0188	0.0592	0.0460	0.0054	0.0018

