INVERSE BAINITE FORMATION IN A Fe-5%Ni/Fe-10%Ni DIFFUSION COUPLE

EDUARDO FRANCO DE MONLEVADE ARTHUR SEIJI NISHIKAWA HÉLIO GOLDENSTEIN

LTF-Phase Transformations Laboratory metalurgical and materials engineering dept.

Universidade de São Paulo Escola Politécnica

INTRODUCTION

- Fe-Ni-C system: "well behaved" in morphological terms
- Not a strong carbide forming element additional complications avoided
- High Ni alloys (9%Ni) are widely used in the oil & gas industry
- Lower Ni diffusion couples have been used before many times to study mechanisms of the ferrite precipitation reaction

EXPERIMENTAL PROCEDURES

Composition of base alloys								
Fe-Ni-5	С	Ni	Si	Mn	Cr	Мо	W	V
	0,010	4,91	0,030	0,030	0,090	0,040	<0,010	<0,010
	Ti	Nb	Со	Cu	AI	Р	S	N ₂
	<0,0050	<0,010	0,010	0,050	<0,0050	<0,0050	0,001	0,0048
Fe-Ni-10	С	Ni	Si	Mn	Cr	Мо	W	V
	0,003	9,94	0,020	<0,010	0,090	0,040	0,030	<0,010
	Ti	Nb	Co	Cu	AI	Р	S	N ₂
	<0,0050	<0,010	0,010	0,050	<0,0500	<0,0050	0,001	0,0042

Production of the diffusion couples

• Carburation:

- 0.5%C (McMaster University)
- 0.7%C (HeatTech/Maxitrate)
- There is a C gradient opposite to the Ni gradient due to effect of Ni on C activity
- Chemical analysis (combustion) gave the following results:

-for 0.5%C ->0.52%C for low Ni, 0.4%C for high Ni -for 0.7%C ->0.81%C for low Ni and 0.6% for high Ni

Heat Treatments

- Vacuum sealed quartz capsule with Ti chips to oxidyze preferentially
- Austenitizing 900° 20 minutes
- Capsule was broken inside the furnace

Heat Treatments

- Isothermal treatment in salt bath - 500℃, 10 minutes
 - 450℃, 10 minutes
 - -400℃, 10 minutes

Degenerate Pearlite

- Described by Ohmori et al in 1971
- Originate from isothermal treatments at low temperatures (~450°C), were sometimes interphase precipitation also occurs
- Cementite lamellae broken, continuous only for short distances
- Orientations change across pearlite nodule, suggesting the existence of pearlite sub grains
- Frequently found inside banded (segregated) regions of continuous cooled microalloyed steels

