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So…Why PFC?
1. To develop better Phase Field Models for 

larger scale simulation (Amplitude Space)

2. To Simulate Diffusive time Problems at the 
atomic level (defects, nanocrystals, thin films)
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Or….
Phase Fields can’t easily capture the physics and Molecular Dynamics is too slow



~1 m ~10nm

Distribution of 
dislocations on 
low-angle grain 

boundary 1A-1nm


[B. Athreya, N. Goldenfeld, J. Dantzig, M. Greenwood, N. Provatas, Phys. Rev. E (2007)]

Distill “new” phase field models from PFC model.

1 - Better Phase Field Models for larger scale simulation



Dislocation Glide

Stefanovic 2007,Berry 2006

Berry 2008

Dislocation melting - BCC

2 - To simulate diffusive time problems at the atomic level 
(defects, nanocrystals, thin films)

Grain boundaries are naturally made up of 
arrays of defects in low angle tilts.

Elasticity also emerges and dislocations 
glide under applied strains.



Conceptualizing a Phase Field Crystal

Position

The phase field crystal model represents lattice
positions by a probability density field. These
probability structures can be viewed as a coarse
graining of the atomic vibrations over a time scale
greater than the atomic vibration time and less
than the diffusive time scale of the atoms.
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Probability is coarse grained over time:

Probability Number Density Field

Instantaneous Atomic Field



Swift-Hohenberg Model 
and Periodic Structures
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Originally developed to study Rayleigh-Bénard convection
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PFC Free Energy
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Expansion of CDFT energy

The density is normalized relative to a 
reference density
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Increasing 
Temperature
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Particle Correlations
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The simplest form for a two particle 
correlation function that produces 
periodic structures 

The correlative energy is truncated in an expansion of particle correlations.  In the PFC 
model this expansion is truncated to 2nd order. (ie. Only two particle correlations are 
considered.)



Gaussian Density Field Reciprocal Lattice
Triangular Lattice - Reciprocal Lattice Kernel
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The structure factor is constructed by summing over 
the fourier transforms of the gaussian peaks at their 
lattice positions.

The direct correlation function:
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Square Lattice - Reciprocal Lattice Kernel
Reciprocal Lattice
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Gaussian Density Field
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The reciprocal lattice for a square
arrangement is also a square lattice.
Using the square lattice Kernel
produces a square lattice structure but
is limited to a particular orientation.
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Triangle Structure - Rotational Invariance
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Integrating out the angular dependence in 
the structure factor illustrates important 
peaks in the radial correlation function.  

The peak height of the direct correlation 
function is related to the Debye-Waller 
factor and emerges directly from the fourier 
transform of the gaussian.
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Square Structure - Rotational Invariance
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Lattices with increased number of atoms
in the unit cell lead to the emergence of
new planes within the unit cell. This leads
to new peaks in the direct correlation
function. These peaks can have separate
Debye-Waller prefactors due to different
atomic spacings within the plane.



bcc

fcc

sc

Spectral Bragg Peaks and Relation to Correlation Function
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Non Interacting Energy
Convolution of density field with Correlation 
Kernel.  
Correlation Peak positions and relative heights 
correspond to Bragg Peaks.

Greenwood et al, PRE2011



Temperature and Debye-Waller Effect
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Temperature enters the model through the 
correlation peak heights.  The heights of 
the peaks are modulated by a Debye-
Waller effect.

Higher frequency peaks are hit 
harder at higher temperatures.



Liquid-BCC-FCC Phase Diagram
For a PURE material

Phase diagram construction is constructed 
by double tangent construction from the 
energy curves for liquid, FCC and BCC 
states.

Greenwood et al, PRL2010
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Linear Elastic Coefficients
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Linear Elastic coefficients can be calculated by 
the second derivative of the free energy for small 
strains
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Tensile strain energy curves
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Energy is proportional to the 
convolution of the correlation function 
value with the mode the density field 
exists at.
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Multiple Components - Binary Model
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Free Energy is written in terms of the sum of the individual energies and interacting 
energies between the two components
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The individual energies can be written as the pure model and correspondingly 
dimensionalized

The interaction term contains information about inter-particle correlations and mixing 
energies.

Let’s leave the math of this out
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Simplified Binary Model
Instead, lets make some definitions:
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Fractional composition: 
Dimensionless
Occupancy Probability:

In addition, we assume that the composition varies on length scales longer than the density.

Binary Model :
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Mixing Energy : 

Effective Correlation Function :
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Square-Triangle-Liquid Phase Diagram

Square-Liquid Coexistence is shown in Green
Triangle-Liquid Coexistence is shown in Red
Square-Triangle Coexistence is shown in Blue

Phase Diagram Construction



Phase Diagrams
A number of factors Influence the phase diagram in this model.  

Choice of interpolation functions : 

Elastic Moduli of the two phases : 

Lattice Spacings and Structure : 
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Parameter Summary


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Ak1
Ak2

Effective Temperature Parameter 
• Modulates correlation peak heights

Effective Kinetic mobilities of the two fields
• Taken to be constant
• M= 1 for current simulations

Correlation Peak widths
• Surface energy
• Linear Elastic Coefficients

Correlation Peak Positions in Fourier space
• Magnitude sets lattice spacing
• Ratio sets structure

 
Fit Parameters to the non-interacting component to the free energy
• Set to 1 for the following simulations as a Taylor expansion of the ideal 
energy about the reference density.
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 Cahn-Hilliard energy parameter for gradients in composition
• In this model correlations in composition are simplified to this form



velocity

Composition Profiles of Solidification

Binary Eutectic Phase Diagram

Solidification in a Channel



Two phase Lamella Growth – Eutectic

Blue (element A) 
– Square structure

Red (element B) 
– Triangle structure

•Solute saturation and short circuit diffusion ahead of the interface.
•Growth rate decreases with increase in lamella spacing.



Lamella and triple junction structure
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Surface energy due to crystalline 
symmetries naturally emerge from the 
model and lead to force balancing at the 
triple junctions between lamella and the 
liquid phases.



Composition segregation to Boundaries and Defects

Two crystals are misoriented with a uniform composition everywhere.  
Solute diffuses to the defects and the interfaces
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Driving Interface Motion in PFC

Single Peak Correlation Function



Two Peak Correlation Function

Driving Interface Motion in PFC



Driving Interface Motion in PFC

Reciprocal lattice peaks of a square symmetry phase



Driving Interface Motion in PFC

Orientation biased kernel



Orientation Bias

Inserting an orientation bias in this fashion has a non-linear relationship 
with the resultant applied driving force.  However at the low driving force 
values we want to study it is a roughly linear relationship.



Zener Pinning

Introduce a fictitious field which turns off one 
correlation function and turns on another.

Misorient two square lattices and drive one 
across the particle.

If the driving force is not great enough the 
lattice symmetries can trap the interface 
on the particle at a misorientation 
between the two lattices.



Time = 0

Time = 2000

Time = 4000

Time = 8000

Solute Drag
velocity

tim
e

• Solute is allowed to segregate to a 
stationary interface.

• An orientation dependence energy bias is 
introduced to drive the interface.

• Composition profile moves with the 
interface and can influence the overall 
velocity of the interface.  This is dependent 
upon the driving force and the ability of the 
solute to diffuse. 
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Composition
Density

Solute Drag
At constant driving pressure the diffusion 
constant of the composition field slows the 
movement of the interface.

At different diffusivities the compositional 
profile (line) around the interface (dots) 
becomes asymmetrical due the driving 
pressure and the resistance to move by the 
solute.



Low Driving Force

High Driving Force

Composition Profile of Low Driving Force



Composition Profile of the stepwise motion of the interface

Solute diffuses across the interface until the interface can advance. 
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Summary
• Phase Field models can incorporate many solid state characteristics in the 

model. However, as the atomistic effects become increasingly dominant 
over the bulk properties it becomes difficult to construct phase field models.

• The PFC formalism can be used to either:
– Construct new phase field models with some of the atomic information built in 

more naturally. 
– Simulate the atomic structures directly at a coarse grained probability level.  

• We have shown how to systematically include additional Correlation Peaks 
to stabilize relevant metallurgical structures of interest, such as bcc, fcc, hcp 
and sc.

• In addition, the introduction of these peaks allows for a simple method to 
tune the anisotropic properties of the crystal structure.

• The model shows promise on being able to simulate solute drag for a 
variety of structurally different phases and for various misorientations.



fccbcc

fcc – bcc transformation
The domain is seeded with a stripe each 
of bcc and fcc and quenched into the fcc 
portion of the phase diagram.

quench

Mean Probability Density



Greenwood et al PRE 2011


