A STEM study of Mn diffusion and interfacial segregation during the formation of partitioned grain boundary ferrite

H. Guo and G. R. Purdy

University of Science and Technology Beijing McMaster University

Jun.18, 2007

Outline

1. A brief review 2. Experimental 3. Some Mn profiles across the grain boundary ferrite 4. A simulation of Mn segregation at α/γ interface

5. Summary

Schematic relation among the local equilibrium with or without Mpartitioning and paraequilibrium for the system Fe-C-M.

(Oi et al, 2000)

Slow growing ferrite

Fast growing ferrite

Microstructures of a Fe-0.2C-2.2Mn formed during the isothermal holding at (a) 700°C and (b) 670°C for 60 min.

(Oi et al, 2000)

The experimental boundary between partitioned and unpartitioned growth (shaded), superimposed on a computed isopleth for 2wt% Mn.

Fe-0.04C-3.00Mn-1.85Si

751°C-1hr

766°C-1hr

Mn Segregation at α/γ interface in Fe-0.04C-3.00Mn-1.85Si, isothermally held at 751°C.

Reaction time	Ferrite precipitate ID	Segregation, (monolayer)	
600s	1 (S4B-F1)	0.00±0.02	
	2 (S4D-F1-i1)	0.42±0.14	
	3 (S4D-F1-i2)	0.47±0.17	
	4 (S4B-F2)	0.57±0.19	
	5 (S4D-F2-i1)	0.57±0.21	
50000s	1 (S3E-F1)	0.17±0.09	
	2 (S3E-F6)	0.36±0.14	
	3 (S3C-F7)	0.64±0.24	
	4 (S3C-F8)	0.70±0.25	

Experimental

Composition of the alloy: Fe-0.37C-3.00Mn-1.85Si (wt%) Homogenization: 1200°C×96 hrs, furnace cooling.

Isothermal heat-treatment:

900-1200°C

656°C (salt bath)

WC

Grain boundary ferrite in Fe-0.37C-3Mn-1.8Si, 1 hour at 656°C

STEM analysis

Edge-on condition Beam spreading in Transmission:

STEM MICROANALYSIS Scanning Mode

Raster scanning: Collecting time >= 150 s

STEM image of an edge-on α/γ interface:

Normalized electron intensity distribution within a 1.5nm-wide interface after the electrons passed through a 200-nm thick foil in a raster window and a probe beam analysis.

An illustration of Mn profile across an α / γ interface. Cs is assumed to be a constant across the interface.

250 nm

Grain size: 50 µm

P3-F1

Oi, Lux, Purdy Acta Mat., **48**, 2000, 2147

An illustration of Mn profile across an α / γ interface.

A simulation to obtain Cs

$$I^{*}(x, x_{0}, y_{0}, t) = \iiint I(x, x_{0}, y_{0}, t)C(x)dxdx_{0}dy_{0}dt$$

$$= \int_{0}^{h} \int_{-\frac{l}{2}}^{+\frac{l}{2}} \int_{-\infty}^{+\frac{w}{2}} \int_{-\infty}^{+\infty} \left[\frac{I_{e}C(x)}{\pi (2\sigma^{2} + \beta t^{3})} \exp\left(-\frac{(x - x_{0})^{2} + y_{0}^{2}}{2\sigma^{2} + \beta t^{3}}\right) \right] dx dx_{0} dy_{0} dt$$

 $\beta = 500 \left(\frac{4Z}{E_0}\right)^2 \frac{\rho}{A}$ the electron probe distribution 1: *I*_e: the total current in the incident probe x0, y0: the position of the incident beam relative the original point x, t: 3-dimensional axes h: the thickness of the sample A: atomic weight Z: atomic number E₀: incident beam energy (eV) ρ : density (g/cm³) σ : standard deviation (=0.33)

Description of the segregation at the interface

Boundary coverage Γ :

$$\Gamma = \rho_{ave.} \frac{A_A}{A_B} \Delta C_s w_i$$

 ρ_{ave} : density of the interface in atoms/nm³

 ΔC_s : composition of the pure segregation (excess Mn at interface)

 A_A and A_B : atomic masses of the segregant and the matrix

w; assumed width of interface

Monolayer: Γ/18.90

A value of monolayers contains a^{-2} segregant atoms per unit area where a^3 is the atomic volume of the segregant. α Mn: cubic, 8.89Å, 58 atoms 1 monolayer = 18.90 atoms/nm²

Interface: Type I

No spike observed at the interface.

The Mn concentrations both at the interface and adjacent matrix are close to the bulk composition.

Interface designation	Mn apparent concentration, (Cg) in mass %	Mn segregation at interface, (monolayers)
1	3.2	0.07±0.03
2	3.1	0.09±0.03
3	3.9	0.12±0.04
4	4.0	0.27 ± 0.06

Interface: Type II

Mn spike is much larger than 10 nm.

Interface designation	Mn concentration, (Cg) in mass % from extrapolation to interface position.	Mn segregation at interface, (monolayers)	
1	5.0	0.31±0.07	
2	6.7	0.39±0.09	
3	7.2	0.42±0.10	
4	7.3	0.44±0.10	
5	7.4	0.46±0.10	
6	7.7	0.46±0.10	
7	8.1	0.50±0.11	
8	7.2	0.59±0.12	
9	7.2	0.73±0.14	
10	7.9	0.88±0.16	

Interface: Type III

No obvious Mn spike observed.

Interface	Mn apparent	Mn segregation at	Mn segregation,
designation	concentration,	interface,	(monolayer)
	(Cg) in mass	(monolayers)	subtracting a 10nm Mn
	%		<u>spike</u>
1	5.1	0.44 ± 0.08	0.12±0.05
2	5.4	0.52±0.10	0.17±0.06
3	5.6	0.38 ± 0.08	0.18±0.06
4	5.7	0.53±0.10	0.22±0.07
5	6.3	0.60±0.11	0.34±0.08
6	6.6	0.74±0.13	0.47±0.10
7	6.9	0.77±0.14	0.47±0.11
8	7.2	1.02±0.17	0.60±0.12
9	8.7	1.25±0.21	0.87±0.17
10	9.8	1.48±0.24	1.10±0.20

A measured Mn profile across a ferrite/martensite interface. A spike less than 10 nm is hard to be detected due to the limitation of the instrument.

Summary (1)

- 1. At 656°C all observed ferrite particles are partitioned in a Fe-0.37C-3.0Mn-1.85Si alloy;
- Extended Mn profiles are observed at some interfaces. The extracted diffusion coefficient of Mn is larger than Wells and Mehl's value; it is thought that excess vacancies are responsible.
- 3. Mn profiles differ from one interface to another, even for a given ferrite crystal. We attribute this to a small variation of Mn concentration in the initial austenite.

Summary (2)

- 4. The majority of the interfaces studied approached a local equilibrium composition; the mobile interfaces tended to possess a similar level of Mn segregation, of the order of a half-monolayer. It is thought that this represents an equilibrium value.
- 5. The results fell into three groups:
 - 1) One set for which there is little or no apparent segregation of Mn; these interfaces are thought to be immobile;
 - 2) A second set for which extended Mn profiles were found in the prior austenite. For these, local equilibrium concentrations as well as interfacial segregation values could be inferred.

3) A third group for which, due to instrumental limitations, no unambiguous interfacial segregation measurements could be made. For these, it was not possible to distinguish between segregation to the interface and a limited Mn spike in austenite.

Acknowledgements

- Drs.H.Zurob, D.Malakhov, A.Perovic
- Drs. H.I.Aaronson, M.Enomoto
- Messrs. J.Garrett, F.Pearson, A.Duft, C.Butcher

Thank you for your attention!

An example of Computed interfacial segregation; variation with assumed width of the interface (w) and foil thickness (h).

Assumed interface width	Segregation (monolayers)		
(nm)	h =150nm	h =200nm	h = 250nm
0.001	0.52±0.08	0.63±0.10	0.72±0.11
1.0	0.53±0.11	0.64±0.13	0.74±0.14
1.5	0.55±0.12	0.66±0.15	0.76±0.15

Distance, nm

P3-F1

A transition from Para-E to P-LE at 751°C

