

Morphology and crystallography of bainitic transformation

Sherri Hadian

Supervised by: Dr. Gary Purdy Dr. Gianluigi Botton

Outline:

- Cementite precipitation crystallography in bainite and tempered martensite;
- Ferrite lath crystallography in Cementite free bainite;
- Possible crystallogeraphic relationship between the three phases, austenite, ferrite and cementite;

Materials composition:

- Steel A: 0.5%C, 5% Ni(bainite with cementite precpitation)
- Steel B: 0.5%C, 5% Ni, 1.8% Si(bainite without cementite)
- Steel C: 0.5%C, 5% Mn, 2%Si(bainite without cementite)

Precipitation crystallography OR: (111)f 0.5° from (101)b Orientation relationship [1-10]f 0.8° from [11-1]b Habit plane **OR** matrix Interface structure BAIN STRAIN $[100]_{E} || [0.65712782, 0.73496730, 0.16735024]_{E}$ Bainite with $[010]_{\rm F} \| [-0.15936876, -0.08152928, 0.98384682]_{\rm B}$ cementite/without cementite [11-1][10-1] $[001]_{\rm F} || [0.98384682, -0.67318352, 0.06355567]_{\rm B}$ microstructure -110] Habit plane [1-1-1] [111] Matrix Product [1-10] Section Product Matrix (111)b//(010)ce Image $w/t = tan\theta$ M. Zhang, progress in mat.Sci.2009,p1101

Bainite/Cementite precipitation

Tempering Orientation relationship:

(103)cem//(110)bcc [010]cem≈//[-111]bcc

OR :

-0.10299	0.550205	-0.6532
-0.57735	0.57735	0.57735
0.915769	0.425871	0.489898

Cementite habit plane: $\approx (20-1)_{cem}$ Bainite habit plane: $\approx (-1-65)_{bcc}$ Stacking faults on: $(001)_{cem}$

Previous works: (Ohmori, Acta.Mater.2001.p3149.)

Cementite habit plane: $\approx (201)_{cem}$

Bainite habit plane: ≈(-143)_{bcc}

Cementite/ferrite orientation relationship

Fu.Wei, Acta.Mater.(2005), p.2419

[111]bcc//[010]cem

In tempered martensite

[111]bcc//[010]cem In bainite

(011)bcc//(200)cem

Bagaryatskii OR. Variants.

	•	
variant	Direction parallel	Plane parallel
V ₁	[111] _b //[010] _c	(0-11) _b //(100) _c
V ₂		(-110) _b //(100) _c
V ₃		(10-1) _b //(100) _c
V ₄	[-111]b//[010]c	(110) _b //(100) _c
V ₅		(101) _b //(100) _c
V ₆		(01-1) _b //(100) _c
V ₇	[1-11]b//[010]c	(110) _b //(100) _c
V ₈		(011) _b //(100) _c
V ₉		(-101) _b //(100) _c
V ₁₀	[11-1]//[010]	(1-10) _b //(100) _c
V ₁₁		(101) _b //(100) _c
V ₁₂		(011) _b //(100) _c

Bainitic ferrite, single variant

Cementite precipitation in tempered martensite (below MS)

Morito et al., Acta.Mater.(2006),p.5323

Cementite orientation variants

[111]bcc//[010]cem

Bagaryatskii OR. Variants.

Direction parallel	Plane parallel
[111] _b //[010] _c	(0-11) _b //(100) _c
	(-110) _b //(100) _c
	(10-1) _b //(100) _c
[-111]b//[010]c	(110) _b //(100) _c
	(101) _b //(100) _c
	(01-1) _b //(100) _c
[1-11]b//[010]c	(110) _b //(100) _c
	(011) _b //(100) _c
	(-101) _b //(100) _c
[11-1]//[010]	(1-10) _b //(100) _c
	(101) _b //(100) _c
	(011) _b //(100) _c
	Direction parallel [111] _b //[010] _c [-111]b//[010]c [1-11]b//[010]c [1-11]b//[010]c [11-1]//[010]

{001}Cementite variant on a standard bcc stereogram 7

Microstructure below MS

[212]bcc[61-3]cem

Multiple variant tempered martensite

Cementite free bainite Ontical microscopy

10min at 350°c 10min at 300°c

9

Bainite in 3 dimension

3min transformation

Crystallography of γ/α interfaces in bainite:

Near NW OR

Input:

OR matrix		
-0.95024	0.133092	-0.1205
-0.1794	-0.73671	0.66702
-0.01024	0.683895	0.732149

Crystallography of γ/α interfaces in bainite: agreement with O lattice calculation

Input:

OR matrix		
-0.95024	0.133092	-0.1205
-0.1794	-0.73671	0.66702
-0.01024	0.683895	0.732149

 $\Delta g = (I - A^{-1})' g_{\alpha}$

W.Zhang,phil.mag.A.(1993) p. 291

$$R = \sum_{i} \sum_{j} \sqrt{\frac{b_{i}b_{j}}{d_{i}d_{j}}}$$

R.Ecob, Acta.Metall.(1981) p. 1037

Output:

Δg(200)	Δg(-1-11)
2	-2
-0.92	0.901
0.91	-1.17

Diffraction pattern showing a Δg normal to the habit plane in b

WBDF of ferrite

Furuhara et.al. Scripta Mater., (2002), p193

Coordinate system for O-Lattice calculations

3 phase crystallography: austenite, ferrite and cementite

Crystallography of bainitic ferrite (Fe-0.6C-2Si-1Mn) b)Bhadeshia, Metall.Mat.Trans.1990,p.767

3 phase crystallography: austenite, ferrite and cementite

summary and future work:

1-cementite precipitation

- single variant of orientation of cementite in bainite and multiple variants in tempered martensite were studied.
- Full characterization of the variants is a future task.
- $2-\alpha/\gamma$ boundaries
- Basic crystallography of α lath was done.
- Dislocation structure(?) and the long direction of the growth can be determined.
- 3- furthur study on the nucleation of cementite on side facets of α is required.

• Questions?

Crystallography of γ/α interfaces in bainite:

Scripta Mater., (2002), p193 Pure screw dislocations

Disl. spacing on $\Delta g(200)$ nm		
2.24417	5.92575	8.802

