Does Ms temperature increase or decrease after deformation of austenite?

B.B. He^1 , W. Xu^2

M.X. Huang¹

¹The University of Hong Kong, Hong Kong

²ArcelorMittal Global R&D Gent, Belgium ³Delft University of Technology, The Netherlands

香

13th ALEMI workshop 26-27 May, 2014

THE UNIVERSITY OF HONG KONG

港 大 學

Introduction

Most results in literature show that deformation austenite at high temperature leads to the decrease of Ms temperature due to mechanical stabilation.

Why deformation can affect Ms? Can austenite deformation increase Ms temperature?

香 港 大 學

THE UNIVERSITY OF HONG KONG

[1] M.Maalekian et al. Mater. Sci. Eng., A 2011[2] Z.M. Shi et al. Metall. Mater. Trans. A 2013

2

Experiments Fe-0.2C-1.5Mn-2Cr (wt%)

- (a) The TTT diagram of the present steel. The ideal deformation temperature 550 °C. No bainite transformation, no dynamic recrystallization
- (b) Temperature- deformation program

香港大學

Fe-0.2C-1.5Mn-2Cr (wt%)

Dilatometer

Dilatometer sample: D: 5 mm; L: 10 mm

香港大學

THE UNIVERSITY OF HONG KONG

Experimental results

Experimental results

Geometrically necessary dislocations (GND) at grain boundaries

7 M.F. Ashby, Philosophical Magazine 21 (1970) 399 Why Ms increases with strain?

According to Kaufman and Cohen, the martensite embryo may pre-exist at austenite grain boundaries.

GND at grain austenite grain boundaries increase Ms, why?

香

港 大 學

THE UNIVERSITY OF HONG KONG

L. Kaufman, M. Cohen, Prog. Metal Phys., 7 (1958) 165-246.

8

Why Ms increases with strain?

$$f = n_0 V \exp(-\frac{\Delta G_0 - \Delta G_{disl}}{kT})$$

f: Volume fraction of martensite n_0 : number of embryos per unit volume (m⁻³)

V : volume of a martensite lath

 ΔG_0 : energy barrier for embryo to grow into martensite lath

 ΔG_{disl} : energy provided by dislocations (GND)

exp(): probability of an embryo growing to a matensite lath

(f = -5% Ms can be detected by dilatometer machine)

In order to have ~%5 volume fraction, more embryos should be activated, indicating lower energy barrier and therefore lower temperature.

Martensite size decreases with strains

(a) 4.7%(b) 18%(c) 25.7%

11

Ms vs strains

粘明 物 速

THE UNIVERSITY OF HONG KONG

Conclusions

- 1. A unified theory based on dislocations can be used to explain both the increase and decrease of Ms with strain.
- 2. Ms increases with deformation at small strains and decreases with deformation at large strains.
- 3. Dislocations at grain boundaries are responsible for the increase of Ms.
- 4. Dislocations in the austenite grain interior are responsible for the decrease of Ms.

Thank you for your attention!

