

Effects of Alloying Elements on Microstructure Formation in Steels and Other Materials

Change in precipitates distribution of Nb-bearing cold-rolled high strength steel sheet under slowly-heated annealing condition

Steel Research Laboratory

JFE Steel Corporation

T. Kobayashi, Y. Ono, T. Fujita,

Y. Nagataki, Y. Funakawa

Introduction

60ppmC-0.1%Nb bearing IF-HSS

Distribution of Precipitates

NbC in 60ppmC-0.1%Nb bearing IF-HSS

PFZ: Precipitate Free Zone

Hypothesis for Lower Yielding

PFZ as prior yielding region

Mechanism of PFZ Formation

Purpose of This Study

To clarify the unique yielding mechanism with precipitate free zone

View Points

- Effect of annealing conditions on PFZ formation
- Effect of PFZ on mechanical properties

Experimental Procedures

Table. Chemical composition of steel used.

С	Si	Mn	Р	S	Nb	sol.Al	N
0.0068	0.02	0.99	0.052	0.009	0.101	0.052	0.0025

(mass%)

Fig. Annealing conditions

Effect of Heating Rate

Microstructures after annealing

TEM Micrographs

Effect of Heating Rate on PFZ

Effect of PFZ Fraction on YS

TEM Micrograph (=0.5%)

Conclusions

- Yield stress of the Nb-bearing steel decreases and the volume fraction of the PFZ increases by reducing the heating rate of recrystallization annealing.
- Strong correlation is found between the amount of PFZ and yield strength for the steel.
- Easy generation and motion of dislocation at the grain boundary accompanied by PFZ are considered to be the essential reason of lower yielding.