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Background

Phase Field Modelling
Modelling tool on the mesoscopic length scale

Phase field equation:
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 The phase field equation is coupled with the carbon diffusion equation to
model the austenite/ferrite transformation




Background

PFEM calculations of 3D phenomena
frequently in 2D

3D PFM of austenite-ferrite transformation
= Comparison with 2D results
— Evaluation of 3D vs 2D calculations

Here, use of commercial code: MICRESS
with multi-phase field approach
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Basic Assumptions

Investigated Case

e Fe-0.1wt%C-0.49wWt%Mn
 Austenite grain size (EQAD) = 20um
 Continuous cooling transformation (0.4 and 10K/s)

Assumptions

» Only carbon redistribution

 Carbon diffusion coefficients independent of carbon content

» Thermodynamics based on paraequilibrium

e Linearized phase diagram

e Carbon partitioning ratio in interface = equilibrium partitioning ratio




Parameters

Numerical parameters:

Interface thickness = 4 nodes, driving pressure averaging

Node size x and automatic time stepping such that convergency
Periodic boundary conditions

Maximum calculation domain size 165x165x165 nodes

Physical parameters (adjustable):

Interface mobility (pre-exponential term, )
Nucleation conditions (temperature range, nuclei distribution)

—> Shield time, shield distance




Conversion 2D — 3D

Grain sizes, nuclei densities

3D
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Nucleation at Triple Lines

Effect of initial austenite microstructure
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Nucleation at Triple Lines

Nucleation spread and mobility
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Nucleation at Triple Lines

3D vs 2D mobility results
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% Nucleation at Triple Lines

Comparison 3D — 2D for 6T=18K




TL + Interface Nucleation

10 K/s

Substantial ferrite grain refinement to 9 um
— Additional nucleation modes active
—> Nucleation at triple lines (TL) and interfaces

Transformation temperatures lower than for 0.4 K/s
= Finer node size required (0.2 vs 0.3 um)




TL + Interface Nucleation

0T=16K/14K and p,=24x10-'m*/Js

e experiment 1
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TL + Interface Nucleation




TL + Interface Nucleation

Comparison 3D — 2D for cube structure
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= TL + Interface Nucleation

Comparison 3D - 2D




TL + Interface Nucleation

Use grain size distribution to determine p,-6T combination

Simulation Comparison with experiment
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Summary

3D PFM predicts more realistic final microstructures

3D transformation “slower” than 2D due to different growth
geometries
= 3D mobilities approximately 30% larger

Challenges:

Control of complex nucleation modes with MICRESS
Intermediate microstructures (e.g. ferrite film)
Statistical relevance of 3D calculations




Ongoing/Future Work

Comparison of 3D PFM with single grain and
spherical shell models

Analysis of mixed-mode character
Evaluation of temperature dependence of mobility

Application to deformation induced ferrite
transformation

Application to austenite formation




Ongoing/Future Work

What can we learn from PFM?

 Effective mobility as a function of nucleation
conditions

 Evaluation of solute drag and/or diffusion of
substitutional elements

 Transition from restrictive equilibria (e.g.
paraequilibrium) to full equilibrium
(orthoequilibrium)




Ongoing/Future Work

Evaluation of Role of Alloying
Elements

» y—a, transformation: Connect PFM with

solute drag model by describing effective
mobility as a function of temperature and
velocity

» ao—>y transformation: Considering long-range
diffusion of substitutional elements in vicinity
of interface (small domain size?, fast diffusion
paths?)
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