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UBC
== Modelling Across Different Length Scales

Atomistic: Mesoscale: Macroscale:
109 — 1010 m 10 -10*m 01-10m
Microstructure evolution Scale of microstructure Size of sheet metal

due to motion of atoms
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Density Functional Theory
Molecular Dynamics

Phase Field Crystal




Unknown Quantities

Mobilities and Solute Drag parameters

> [M,D,/6 and E,|

Can we determine all or some of these parameters from atomistic simulations?

Adjustable
parameters

=M, Mobility of pure interface (Molecular Dynamics)

=D, =D exp(-Q,/KT), Diffusivity of solute across interface (Molecular
Dynamics?)

= Q,, Activation energy of interfacial solute diffusion (Density Functional
Theory)

= E_, Binding energy of solute to interface (Density Functional Theory)



Project Flow:
Length and Time Scales

Atomistic: | DFT (density functional theory):

ab-initio calculation of binding
(E,) and activation energies
(E,) of solutes at a-y interface

MD (molecular dynamics):
Use DFT results to build suitable
potentials for simulations of mobility (M)

of a-y interface
Note: Time scale of atomic vibrations,
l.e. approx. 10 ns

Mesoscale:

PFM (phase field model):
Use DFT/MD/PFC (c,) results for binding
energy (E,), interfacial diffusion (D,) and

mobility (M) to simulate solute drag and

PFC (phase field crystal):
Provide linkage from atomistic to
continuums modelling using MD
length scale and PFM time scale,
translate interaction potentials to
two-point correlation function (c,)

overall transformation kinetics

Macroscale:

JMAK (Johnson-Mehl-Avrami-Kolmogorov):
Translate PFM solute drag model into
suitable JIMAK rate parameters for overall
transformation model

Validation Experiments:
Validate transformation model
with experimental data




Density Functional
Theory Studies
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THE DREAM

Tell the computer how many and what kind of particles
one has in a problem of interest and get the exact

solution based solely on this information.

Quantum Mechanics — theory to provide this solution

Schrodinger equation: H‘I’i = E.!:\I'E'

BUT: Many body effects (electron-electron interaction) are
difficult/impossible to treat even numerically (solutions just

available for small systems)

THUS:
Need suitable approximations — Density functional theory (DFT)



DFT in a nutshell

r e B
Electron densityp( _) F (p(’F)) ofgaf energy

If functional F is known, one can immediately find the total
energy of the system for any given electron density distribution.

Replace interactions with 0
an effective potential Q| Ve
e e},

Q¢

Since p Is the same, the total energy must be the same too.

Need to find approximations for V using theory of
Interacting electron gas (LDA, GGA).

Note: Ground state theory — T =0 K, can consider ~ 100 atoms

P int = P nonint



Self Diffusion In bcc Fe

VASP — commercial DFT code using pseudo-potentials

Supercell size: 3x3x3 (54 atoms) [0 ' ' ‘ : ' ! ' ]
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Substitutional Diffusion Iin bcc Fe
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Substitutionals at Grain Boundaries
Consider Special Grain Boundaries

boundaries with special properties, e.g. low

energy

finite fraction of lattice sites coincide between
the two lattices — defines coincident site lattice

(CSL).

boundary with high density of lattice points in a

CSL expected to have s

special boundaries with
symmetry can reasonab
(rather small calculation

pecial properties
nigh degree of

y be considered in DFT
domains)




2.5 1001] {013} Tilt Grain
Boundary

(013)

c-m-mem---- Boundary
plane

¥ [001],

The structure of the 25 [001] {013} tilt GB in bcc Fe. White circles and grey
circles represent the ABAB... stacking sequence of the atomic planes
perpendicular to the rotation axis. This boundary contains a stack of capped

trigonal prisms (CTPs): ABCA’C'B’ and has a mirror symmetry with respect to the
(013) boundary plane.
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Perspective View
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The shallow balls represent the next layers. Three yellow grids
X Z represent three layers in x direction



2.5 1001] {013} Tilt Grain
Boundary

One periodic supercell with two identical grain boundaries

) Distance between two identical GBs aﬁ

GB1 GB2



Grain Boundary Energy
1

AE — _( E . E ) E total energy of supercell with grain boundary
Bulk /] E;,  total energy of supercell without grain boundary
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UBC : :
Vacancy Formation Energies

Vacancy Formation Energy (eV)
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Relative Energy (eV)
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In this path, the energy barrier is 0.55 eV




Binding Energies of

Substitutionals
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Nb with higher binding energy compared to Mo, Mn and V ° Oxn I °

— stronger interaction of Nb with grain boundaries | £

— different site preferences for different solutes (Nb, Mo on a and Mn, V on b)



Future Work and Challenges

Determine activation energies for grain boundary diffusion
of substitutional solutes

Determine binding and activation energies of substitutional
solutes in the presence of carbon and/or other solutes

Develop kinetic Monte Carlo code to simulate grain
boundary diffusion

Analyze magnetic state of austenite with DFT simulations
(required to propose suitable assumptions for simulations
of austenite-ferrite interface)



