Growth of cementite with alloy partitioning during tempering of martensite

<u>G. Miyamoto</u> and T. Furuhara Inst. Materials Research, Tohoku University

'08 / 3 / 28 ISIJ Meeting @ Musashi Inst. of Tech.

As-quenched martensite is brittle.

 \rightarrow Improvement of toughness by tempering

Tempering Low temperature : 150~250°C High temperature : 650°C

Remarkable softening in Fe-C martensite

Strengthening by precipitation

V		
Precipitation	Steels	Alloying element
Alloy carbide (Mo ₂ C, V ₄ C ₃ , Cr ₇ C ₃)	Secondary hardening steel	Mo, Cr, V
Intermetallics etc (Ni ₃ Ti, Fe ₂ Mo, ε-Cu)	Maraging steel	Ni, Ti, Cu, Mo
Iron carbide $\left(\begin{array}{c} \epsilon \text{ carbide}(Fe_{2\sim3}C), \\ cementite (Fe_{3}C) \end{array}\right)$	Simple composition steel	Mn, Si

Fe-C martensite tempered for 1h

R. A. Grange et al.(1977)

Alloying effect on hardness of tempered martensite(Fe-0.6C-M)

Miyamoto et al. Acta Mater (2007)

$\epsilon \rightarrow \theta$ transition in Fe-0.6C-M alloys

Tempered at 523K for 1.2ks

Fe-0.6C-2Mn

retarding $\varepsilon \rightarrow \theta$ transition by Si Large softening retardation

at low temperature tempering

How do Mn and Si retard softening at higher temperatures?

Growth of cementite with alloy partitioning

Theoretical coarsening rate of θ in Fe-C-M ternary system was derived by assuming equilibrium partitioning.

S. Björklund, et al. : Acta Met., 20(1972), 867

> Alloy partitioning between α / θ

- Equilibrium state : Mn is enriched in θ while Si is rejected from θ .
- Tempered martensite :

para- θ (no macroscopic redistribution of alloying element between α / θ) is frequently observed.

<u>Objective</u>

To clarify the growth kinetics of θ accompanied with solute partitioning in tempered high-carbon martensite

Experimental procedure

◆Alloy(mass%): Fe-0.6%C, Fe-0.6%C-M(M=1%Mn, 2%Mn, 2%Si)

Observation and measurement

SEM, TEM (+EDS), three dimensional atom probe (3DAP)

Alloying effect on growth of carbide in tempering at 723K (TEM)

Fe-0.6C-2Si tempered at 723K for 1.2ks (3DAP)

Fe-0.6C-2Mn tempered at 723K for 30s (3DAP)

10

<u>Change in θ distribution during tempering of Fe-0.6C at 923K (SEM)</u>

Variation in composition of θ during tempering at 923K

Si ; Swept out from θ even after short periods of tempering

Mn ; Nearly no partitioning and enriched into θ gradually with increasing time

> Partitioning of Mn and Si retards θ coarsening

Coarsening rate equation $\overline{r}^{3} - \overline{r_{0}^{3}} = \frac{8 \sigma V_{\theta} x_{C} D}{9 RT} t$

- : average radius of θ at t r
- \overline{r}_0 : average radius of θ at t = 0
- σ : α / θ interfacial energy $(=0.7 \text{ J/m}^2)$
- x_c : carbon content in ferrite equilibrated with cementite
- V_{θ} : molar volume of θ
- diffusion coefficient of C in α D

Tempering time(s)

Fe-0.6C alloy tempered at 923K

Coarsening rate of θ in Fe-0.6C alloy

$$\overline{r}^3 - \overline{r}_0^3 = \frac{8\sigma V_\theta x_C D_{eff}}{9RT} t$$

coupled diffusion :

Volumetric mismatch between α and θ is relaxed by Diffusion of Fe (vacancy) $\rightarrow \theta$ coarsening is controlled by Fe and C

Effective diffusion coefficient

$$D_{C}^{eff} = \frac{n_{Fe} D_{c} D_{Fe} V_{Fe}}{n_{Fe} D_{Fe} (V_{Fe})^{2} + n_{c} D_{c} (V_{c})^{2}} \{ V_{Fe} + (\frac{n_{c}}{n_{Fe}}) V_{c} \}$$

- V_{Fe} : molar volume of Fe
- V_{c} : difference in molar volume of Fe between α and θ
- D_c : diffusion coefficient of C
- D_{Fe} : diffusion coefficient of Fe

Oriani, (1964), Acta Metall, Li et al. (1966), Acta Metall Fe-0.6C alloy tempered at 923K

Coarsening rate of θ in Fe-0.6C-M alloy

$$\overline{r}^{3} - \overline{r}_{0}^{3} = \frac{8\sigma V_{\theta}}{27RT} \frac{D_{M}^{\alpha}}{(1 - K^{\theta/\alpha})^{2}} u_{M}^{\alpha}$$

- $K^{\theta/\alpha}$: partitioning coefficient $(X_M^{\theta} / X_M^{\alpha}) \rightarrow (K_{Si} \approx 0, K_{Mn} \approx 15)$
- $u_M{}^{\alpha}$: M content in a at the α / θ interface
- \overline{r} : average θ radius at tempering time of t
- \overline{r}_0 : average θ radius at tempering time of t=0
- σ : interfacial energy of α / θ (=0.7J / m^2)
- $\mathsf{D}_{\mathsf{M}}{}^{\alpha}$: lattice diffusion coefficient of M (${\rightarrow} \mathsf{Oikawa}(1965)$)
- V_{θ} : molar volume of θ

S. Björklund, et al. : Acta Met., 20(1972), 867

Coarsening rate of θ in Fe-0.6C-M alloy

Coarsening in Fe-C-M alloy

Log (tempering time)

Conclusion

Effect of Mn and Si addition on growth of θ during tempering of Fe-0.6%C martensite was investigated.

Growth of carbide

- Si and Mn retards θ growth in tempering at 723K(Si>Mn) and 923K(Si<Mn)
- Coarsening rate of θ at 923K in 1Si alloy is in good agreement with theoretical one assuming equilibrium partitioning. While coarsening rate in 1Mn and 2Mn alloys is faster than the theory.

Partitioning of alloying element between α / θ

- Si is rejected from θ from the initial stage of precipitation of θ .
- Mn does not macroscopically redistribute in tempering at 723K, and is gradually enriched in θ after long tempering at 923K.