

Reconstruction of austenite orientation map based on martensite / bainite orientation data and application to ausforming

> G. Miyamoto, N. Takayama, T. Furuhara Institute for Materials Research, Tohoku Univeristy, Japan '10/6/4 Max Planck (Dusseldorf)

Outline

- 1. Introduction of ausforming
- 2. Measurement of orientation relationship between martensite & bainite / austenite matrix.
- 3. Reconstruction of austenite orientation map based on ferrite orientation map of martensite and bainite structures, and application to ausforming treatment.

Crystallographic feature of lath martensite / bainite

Lath martensite holds near K-S O.R. with γ matrix

Low carbon martensite

Ausforming treatment

To obtain martensite/bainite structures transformed from deformed & unrecrystallized γ

Improvement of toughness and strength due to increasing dislocation density and refining substructure.

Effects of ausforming microstructure

H.Kawata, et al., Mater. Sci. Eng. A (2006)

Fe-9%Ni-0.15%C alloy transformed at 623K non deformed γ deformed γ

Reconstruction of γ grain map

- Cayron et al., Mater. Char., 57(2006), 386
- Morimoto et al., Tetsu to Hagane, 93(2007), 591
- Based on averaged orientation of each ferrite grain, misorientation matrices at high angle boundary in lath martensite structure are calculated.
- 3 When the misorientation matrix coincide with that predicted by assuming K-S(N-W) O.R. within a permissible angle, ferrite grains neighboring this boundary is judged as forming from the same γ grain.

Previous reconstruction method have been applied to only non-deformed martensite.

 $\frac{\text{Aim}}{\text{Developing new method which can reconstruct}}$ deformation structure in γ grain

C. Cayron et al.

Outline

- 1. Introduction of ausforming
- 2. <u>Measurement of orientation relationship</u> between martensite & bainite / austenite matrix.
- 3. Reconstruction of austenite orientation map based on ferrite orientation map of martensite and bainite structures, and application to ausforming treatment.

OR between martensite(M) / γ in ferrous alloys

Alloy	Type of M	Angle (111)γ ~(011)α	Angle (-101)γ ~(-1-11)α	Method
Fe-3.1Cr-1.5C ^{*1}	Thinplate{225}	0.3°	2.8°	
Fe-22Ni-0.8C ^{*1}	Thinplate	1°	2.5°	Laue(X-ray)
Fe-32Ni ^{*1}	Lenticular	1°	4.3°	
Fe-20Ni-5Mn ^{*2}	lath	0°	3.9°	SADP(TEM)

*1 : C.M. Wayman, *Adv. Mater. Res.*, 3(1968), 147.

*2 : B.P.J. Sandvik, C.M. Wayman, *Metall. Trans.*, 14A(1983), 809.

OR between martensite(M) / γ in ferrous alloys

Alloy	Type of M	Angle (111)γ ~(011)α	Low carbo (Fe-0.1C-	on martensite ^{*3} 2Si)
Fe-3.1Cr-1.5C ^{*1}	Thinplate{225}	0.3°		retained γ
Fe-22Ni-0.8C*1	Thinplate	1°		
Fe-32Ni ^{*1}	Lenticular	1°		AND THE REAL
Fe-20Ni-5Mn ^{*2}	lath	0°	Kelly, et al, (1990)	
Fe-0.1C-2Si ^{*3} Fe-0.3C-3Cr -2Mn-0.5Mo ^{*3}	lath	0°	2.5°	Kikuchi diffraction(TEM)

Accurate data of OR for lath martensite in low carbon steels are few, because austenite is difficult to be retained.

*1 : C.M. Wayman, Adv. Mater. Res., 3(1968), 147.

*2 : B.P.J. Sandvik, C.M. Wayman, *Metall. Trans.*, 14A(1983), 809.

*3 : P.M. Kelly, et al, Acta Metall. Mater. 38(1990), 1075.

Experimental

O.R. determination based on EBSD measurement

G. Miyamoto et. al, Scr. Mater. (2009)

OR between lath M / γ

- Scattering in OR is less than ±0.3° in one alloy
 → high accuracy
- Close-packed planes and directions are not parallel.
- The higher Ms temperature, the larger angle between close packed planes.

Outline

- 1. Introduction of ausforming
- 2. Measurement of orientation relationship between martensite & bainite / austenite matrix.
- 3. <u>Reconstruction of austenite orientation map</u> <u>based on ferrite orientation map of</u> <u>martensite and bainite structures, and</u> <u>application to ausforming treatment.</u>

γ orientation determination based on EBSD measurement

Decreasing size of cropped area + automatic cropping procedure

mapping of local γ orientation

Determination of local γ orientation

Experimental procedure

Alloy Fe-0.15C-3Ni-1.5Mn-0.5Mo(mass%)

Treatment Thermecmaster Z

α orientation map of non-deformed specimens and M,B/ γ O.R.

Orientation relationship	martensite	bainite
$(111)\gamma / (011)\alpha$ angle $(\Lambda \theta \text{ angl})$	1.5°	1.3°
$[-101]\gamma$ [-1-11] $\dot{\alpha}$ angle ($\Lambda \theta_{app}$)	2.7°	2.9°

γ orientation map reconstructed from non-deformed martensite

 α orientation map

O.R.($\Delta \theta_{CPP} = 1.5^{\circ}$, $\Delta \theta_{CPD} = 2.7^{\circ}$)

reconstructed γ orientaion map

Scatters in reconstructed γ orientation

Effect of O.R. used for reconstruction

When K-S O.R. is used, mis-indexing as twin is frequently happened.²⁰

Reason for mix-indexing of twin orientation

Non-parallel relation between close-packed planes loses twin symmetry?

Reconstruction of γ orientation map from 30% ausformed martensite

 $\frac{\text{EBSD}}{0.2 \,\mu \,\text{m step}}$ $\frac{\text{Condition}}{2.0 \,\mu \,\text{m mesh \& step}}$ O.R. $\Delta \,\theta_{\text{CPP}} = 1.5^{\circ}$ $\Delta \,\theta_{\text{CPD}} = 2.7^{\circ}$

Reconstruction of γ orientation map from 30% ausformed martensite

Reconstruction of γ orientation map from non deformed bainite

<u>EBSD</u>(0.5 μ m step) <u>Condition</u>(5.0 μ m mesh, 2.5 μ m step) O.R.($\Delta \theta_{CPP} = 1.3^{\circ}, \Delta \theta_{CPD} = 2.9^{\circ}$)

White line	twin boundary
Black line	other H.A.G.B

Reconstruction of γ orientation map from 30% ausformed bainite

<u>EBSD(0.5 μ m step)</u> <u>Condition(5.0 μ m mesh, 2.5 μ m step) O.R.($\Delta \theta_{CPP} = 1.3^{\circ}$, $\Delta \theta_{CPD} = 2.9^{\circ}$)</u>

White line	twin boundary
Black line	other H.A.G.B

Summary

New methods determining M·B/ γ O.R. and reconstructing γ orientation are developed.

O.R. measurement

•Orientation relationship between M / γ and B / γ can be determined precisely within an error of 0.5degrees based on EBSD measurement without retained austenite.

•Close-packed planes and directions of martensite and bainite are not parallel. Angular deviation between close-packed planes decreases with an decrease in Ms temperature.

γ orientation reconstruction

•Mis-indexing of twin orientation frequently happens when K-S or N-W O.R. are used for reconstruction possibly because of mirror symmetry of 111γ // 011α relation. By using experimentally determined O.R., frequency of the mis-indexing is reduced largely.

•Deformation structure in γ can be reconstructed successfully and be analyzed misorientation profile or KAM analysis.

Misorientation profile of lath martensite

V1/V2,3,4,5,6

Martensite and bainite structures

Ohmori, Honeycombe: Proc. Int. Conf. Sci. & Technol. of Iron and Steels, Suppl. Trans. ISIJ, 11 (1971), 1160.

Simple orientation relationship in fcc \rightarrow bcc transformation

 $FCC(\gamma : austenite)$

BCC(α :ferrite, martensite, bainitic ferrite...)

[110]γ // [100]α Nishiyama-Wassermann(NW) **(111)**γ (111)γ // (011)α [110]γ // [100]α (011)α [101]γ // [11]α Kurdjumov-Sachs(KS) (111) γ // (011) α $[\bar{1}01]\gamma // [\bar{1}\bar{1}1]\alpha$

$FCC \rightarrow BCC$ shear transformation

Notice:OR determined in this method

Misorientation profile of lath martensite

<u>再構築結果に及ぼすメッシュ、ステップサイズの影響(30%加工変態途中B)</u>

Mesh-step

変態温度による方位関係の変化 \mathbf{F} (外形変化) = \mathbf{R} (剛体回転) \mathbf{B} (ベイン変形) \mathbf{P} (格子不変変形) 方位関係を決める Low Temp. B+P (less plastic accommodation) <u>High Temp.</u> (more plastic B+P accommodation)

More plastic accommodation leads to approaching Bain O.R. 35

ラスマルテンサイト(Fe-20Ni-5Mn合金)

