

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Materia

Experimenta characteriza tion

The model

Results

Conclusions and outlook Modelling the $\alpha \to \gamma$ transformation of a low carbon martensitic stainless steel.

C. Dessolin, M. Perez, C. Hutchinson

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $A\ell EMI$ - June 24-25th 2013- Delft

Context and challenges

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Material

Experimenta characterization

The model

Results

Conclusions and outlook

The material :

• Good yield strength, without Hardening Precipitation (welding and aging) and good resilience.

Context and challenges

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Material

Experimenta characteriza tion

The model

Results

Conclusions and outlook

The material : X4CrNiMo16.5.1 or APX4

• Good yield strength, without Hardening Precipitation (welding and aging) and good resilience.

 \Rightarrow Due to lamellar residual austenite

During welding

Stability of residual austenite?

Outline...

transformation of a martensitic stainless steel.

(1The Material

2 Experimental characterization

Results

(5) Conclusions and outlook

The material : APX4

 $\begin{array}{c} \alpha \ \rightarrow \ \gamma \\ {\rm transformation} \\ {\rm of \ a} \\ {\rm martensitic} \\ {\rm stainless \ steel.} \end{array}$

The Material

Experimenta characterization

The model

Results

Conclusions and outlook

Chemical composition

Element	Cr	Ni	Mo	Mn	Cu	Si	C	Ν	Р	S
wt%	15.5	4.75	0.97	0.93	0.1	0.24	0.06	0.04	0.017	0.001
at%	16.5	4.48	0.56	0.94	0.09	0.47	0.28	0.16	0.024	0.002

・ロト・西ト・西ト・日・ 日・ シュウ

The material : APX4

Microstructure : martensitic matrix

- 3% vol. delta
- 6% vol. γ (Morphology by ASTAR ^a)
- a. Courtesy of M. Veron, Grenoble INP

 $\alpha
ightarrow \gamma$ transformation of a martensitic stainless steel.

The Material

Experimenta characterization

The model

Results

Conclusions and outlook

Experimental characterization

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Material

Experimental characteriza-tion

The model

Results

Conclusions and outlook

Austenite fraction during heating

- Adamel-Lhomargy DT1000 quench dilatometer (CEA Saclay/SRMA)
- Continuous Heating : 0.1, 1, 10 and 50°C/s, $T_{max} = 1050^{\circ}$ C
- Samples : as-quenched state, L = 10 mm ; $s = 1 \text{ mm}^2$
- Lever rule to determine % γ :

Experimental characterization

Austenite fraction vs heating rate

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Material

Experimental characteriza-tion

The model

Results

Conclusions and outlook

"To win a race, the swiftness of a dart. Availeth not without a timely start" ^a

a. J. de La Fontaine, 1688

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Material

Experimenta characterization

The model

Results

Conclusions and outlook

Hypothesis

- Interface motion is driven by nickel diffusion
- LE for Ni and full equilibrium for C
- linear 1D problem

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Material

Experimenta characterization

The model

Results

Conclusions and outlook

Hypothesis

- Interface motion is driven by nickel diffusion
- LE for Ni and full equilibrium for C
- linear 1D problem

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Material

Experimenta characterization

The model

Results

Conclusions and outlook Kinetics equations

• Flux between adjacent layers

$$J = -D\frac{\partial C}{dx}$$

• mass balance on a layer of surface S

$$(-J^{lpha}+J^{\gamma})Sdt=(C^{\gamma}-C^{lpha})Sdx$$

interface velocity

$$v = \frac{dx}{dt} = \frac{J^{\gamma} - J^{\alpha}}{C^{\gamma} - C^{\alpha}}$$

 $\alpha \rightarrow \gamma$ transformation of a martensitic stainless steel.

The Materia

Experimenta characteriza tion

The model

Results

Conclusions and outlook

Interfacial compositions : T_1

 $\alpha \rightarrow \gamma$ transformation of a martensitic stainless steel.

The Materia

Experimenta characteriza tion

The model

Results

Conclusions and outlook

Interfacial compositions : $T_2 > T_1$

 $\alpha \rightarrow \gamma$ transformation of a martensitic stainless steel.

The Materia

Experimenta characteriza tion

The model

Results

Conclusions and outlook

Interfacial compositions : $T_3 > T_2 > T_1$

 $\alpha \rightarrow \gamma$ transformation of a martensitic stainless steel.

The Materia

Experimenta characteriza tion

The model

Results

Conclusions and outlook

Interfacial compositions : $T_3 > T_2 > T_1$

• Massive transformation : impossible !

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Materia

Experimenta characteriza tion

The model

Results

Conclusions and outlook

Interfacial composition : the idea

• Activity of carbon remains the same between LE and FE

at a given T, calculate activity of C with FE conditions
calculate the composition of α (constrained LE)
calculate the composition of γ(constrained LE)

transformation

of a martensitic stainless steel.

The model

Interfacial composition : results

30 XNi Aust Data XNi Fer Data XNi Aust Fit 25 XNi Fer Fit 20 Ni Content 15 10 5 0 800 900 1000 1100 1200 1300 700 Temperature (K)

The model

・ロト ・聞 ト ・ ヨト ・ ヨト

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Materia

Experiment characteriza tion

The model

Results

Conclusions and outlook

Parameters

• Diffusion of Ni in martensite?

$$D^{lpha'} = D^{lpha} A \exp\left[Q/(RT)
ight]$$

• A = 0.1 and Q = 75 kJ/mol

• Diffusion of Ni in martensite and austenite

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Materia

Experiment characteriza tion

The mode

Results

Conclusions and outlook

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Materia

Experimenta characterization

The model

Results

Conclusions and outlook

Isothermal

▲□▶ ▲圖▶ ★ 国▶ ▲ 国▶ - 国 - ののの

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Materia

Experimenta characteriza tion

The mode

Results

Conclusions and outlook

$\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Materia

Experimenta characteriza tion

The mode

Results

Conclusions and outlook

(ロト 《聞 と 《臣 と 《臣 と 三臣 二の文)

Conclusions and outlook

 $\begin{array}{c} \alpha \rightarrow \gamma \\ \text{transformation} \\ \text{of a} \\ \text{martensitic} \\ \text{stainless steel.} \end{array}$

The Material

Experimenta characterization

The model

Results

Conclusions and outlook

Conclusions

- Simple LE model
- Interface motion limited by Ni diffusion
- Needs for thermodynamical data
- Explanation of the two regimes for interface migration
- low temperature austenite acts as Ni reservoir

Outlook

• Transition between diffusion limited and interface limited migration

• Massive transformation during couling