

Investigation of the Transition from Lath to Plate Martensite in Fe-C

Albin Stormvinter

Division of Physical Metallurgy Dept. of Materials Science and Engineering KTH, Royal Inst. of Technology

Acknowledgements:

KTH: Annika Borgenstam, Peter Hedström, Mats Hillert and John Ågren INPG: Yves Brechet, Patricia Donnadieu, Edgar Rauch and Muriel Veron

Background

Steel grades Fe-0.88C Fe-1.20C Fe-1.67C

> Carbon gradient 0-1.67C

Characterization - LOM

Lath martensite (~0.3C) 350°C (4sek)

Plate martensite (~1.6C) 25°C

hero-m

Characterization - SEM

Lath martensite (~0.3C)

Plate martensite (~1.2C)

hero-m

Characterization - SEM

Martensite (~0.7C)

Characterization - TEM

Characterization - TEM

TEM-ACOM Automated Crystallographic Orientation Mapping.

What can we obtain: Phase maps Orientation maps

hero-m

Characterization - TEM

Characterization

Characterization - EBSD

Fe-0.88C (220x200 µm) Step size 300 nm

Fe-1.2C (40x40 µm) Step size 50nm

Characterization

IPF (Martensite) + CI

FEG-SEM with EBSD

Backscattered electrons from a surface area of roughly 50 nm will contribute to the

EBSP picked up by the camera.

Conclusion:

Detection of individual twins in plate martensite will be difficult with this technique.

Summary

Gradient shows: Lath martensite 0-0.6C Mixture between 0.6-1.2C Plate martensite >1.2C

Intersection between the plateaus and the morphological transition from lath to plate martensite agrees well

