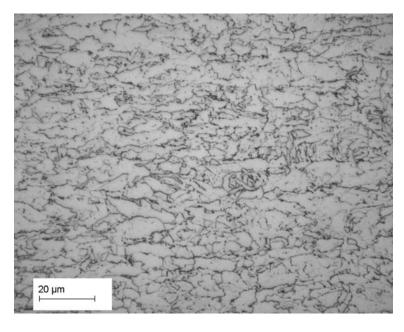
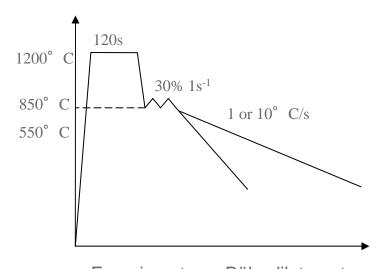


Phase transformation in Nb-microalloyed steels P. Thibaux OCAS / ArcelorMittal Global R&D Gent

Phase transformation in Nb-microalloyed steels

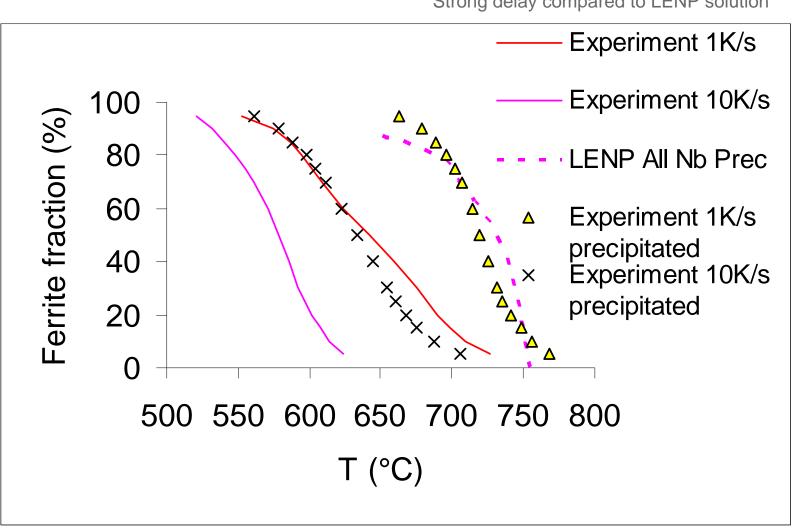

- Focus on transformation occurring after deformation at high temperature
- Pre-requisite: Nb is causing a delay of the phase transformation due its interaction with the interface (see paper 039, Monday morning)
- How to describe the phase transformation kinetics?
- (Semi-) industrial approach -> simple! but adequate for complex alloys



Typical microstructure

	С	Mn	Si	Ti	Nb	Ni	N
В	0.067	1.6	0.29	0.021	0.07	0.25	31

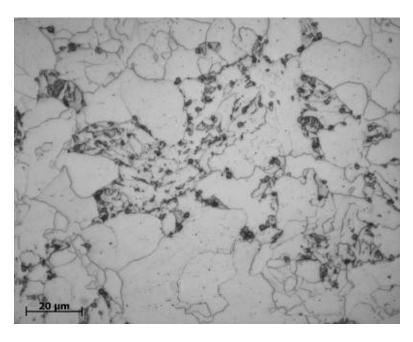
Reference microstructure

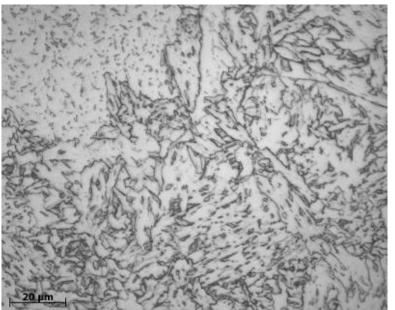

Experiments on Bähr dilatometer

ion of ArcelorMittal ormation Cannot be disclosed, use CONFIDENTIAL

ArcelorMittal

Phase transformation kinetics


Strong delay compared to LENP solution



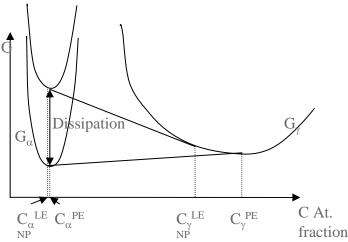
Phase transformation kinetics

How does the microstructure looks like after dilatometry

1K/s 10K/s

Size of austenite grains ~60µm

© 2009 – ArcelorMittal – All rights reserved for all countries ot be disclosed, used, or reproduced without prior written specific authorization of ArcelorMittal CONFIDENTIAL – Privileged Information - ArcelorMittal's proprietary information



Estimation of the dissipation at the interface

- Reduction to a binary system Fe*-C, where Fe* is the equivalent subsitutional element
 - No partiotionning of substitutional elements

$$x_i = \frac{\begin{bmatrix} X_i \end{bmatrix}_{\alpha}}{\begin{bmatrix} Fe \end{bmatrix}_{\alpha}} = \frac{\begin{bmatrix} X_i \end{bmatrix}_{\gamma}}{\begin{bmatrix} Fe \end{bmatrix}_{\gamma}}$$
 $X_i = Mn, Si, Ni$

$$\mu_{\alpha}^{Fe^*} = \frac{\left[Fe\right]_{\alpha} \cdot \mu_{\alpha}^{Fe} + \sum \left[X_i\right]_{\alpha} \cdot \mu_{\alpha}^{X}}{\left[Fe\right]_{\alpha} + \sum \left[X_i\right]_{\alpha}}$$

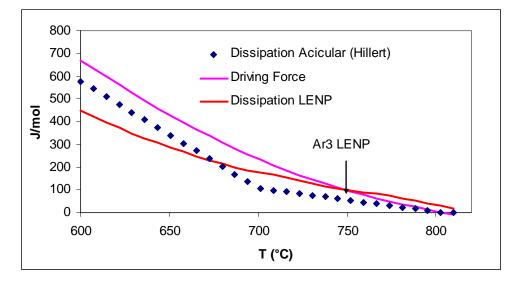
The driving force for the phase transformation

$$DF = \left(\mu_{\gamma}^{Fe^*} - \mu_{\alpha}^{C}\right) \cdot \left(C^{\gamma} - C^{\alpha}\right) + \left(G^{\gamma} - G^{\alpha}\right)$$

• The dissipation due to the formation of a spike

$$DS = \sum_{i} x_{i} \cdot \left(\mu_{\gamma}^{i} - \mu_{\alpha}^{i}\right)$$

Estimation of the dissipation at the interface



Comparison between driving force & dissipation

Also plotted, dissipation for bainite according to Hillert, Hoglund

Agren, Met Trans 2004

$$\Delta = f(T) + g(T, Mo, Cr)$$

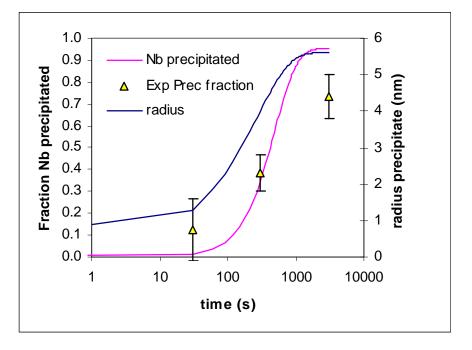
Dissipation LENP > Dissipation "bainite" until 680° C

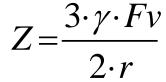
- •Sum of dissipations not possible: leads to impossible transformation
- •For ferrite, need of an extra dissipation mechanism to explain the delay of the phase transformation down to 700° C in presence of Nb
- •At 700° C, difference between driving force and dissipation ~50J/mol

countries : authorization of ArcelorMittal brietary information © 2009 Cannot be disclosed, used, or CONFIDENTIAL – Pr

Extra dissipation mechanism for Nb-steels?

- Classical way to introduce an extra dissipation mechanism: mobility
 - mobility data very variable
 - Results very sensitive to the cooling rate & grain size

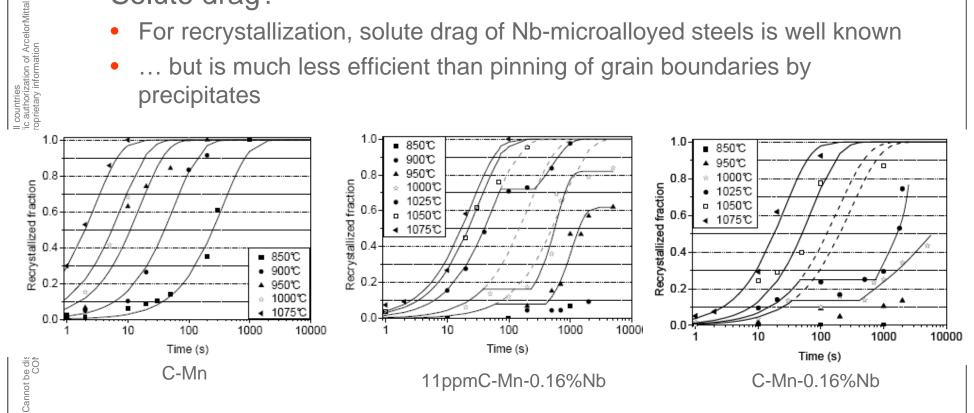

$$D^m = \frac{v}{M}$$


 Experimental evidences that the grain size has almost no influence on the phase transformation in the considered condition

Extra dissipation mechanism for Nb-steels Procelor Mittal

- Zener Pinning?
 - Max Zener pressure:
 - Radius of the precipitates
 - Compute from cells (growth of one nucleus)
 - Distance between nuclei to fit the measured precipitated fraction

Surface energy ~0.75J/mol


Dissipation due to Zener pressure:

$$DZ = \frac{3 \cdot \gamma \cdot Fv}{2 \cdot r} \cdot V_m < 1J / mol!$$

Extra dissipation mechanism for Nb-steels? **rcelorMittal

- Other possibilities?
 - Solute drag?
 - For recrystallization, solute drag of Nb-microalloyed steels is well known
 - ... but is much less efficient than pinning of grain boundaries by precipitates

Driving force for recrystallization smaller than for phase transformation

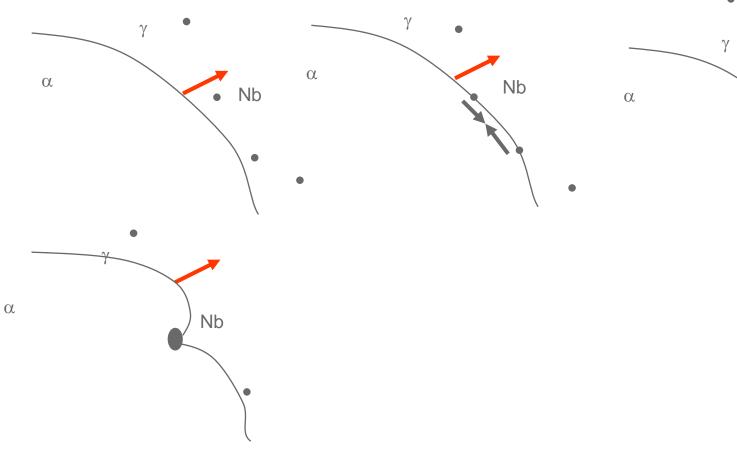
Extra dissipation mechanism for Nb-alloyed steels

- Hyptohesis: to delay the phase transformation, we need precipitates in the grain boundaries
- ... but Zener Pinning seems insufficient

$$Z = \frac{3 \cdot \gamma \cdot Fv}{2 \cdot r}$$

- Is it possible to revise our view?
 - Classical formula for Zener pinning assumes homogeneous distribution of precipitates according to their radius and mass balance
 - What if elements segregate to the grain boundary or lateral diffusion of elements in the grain boundary?
 - Zener pinning becomes "enhanced" by the larger amount of solute available

"Reverse" DIGM / discontinuous precipitation combined with phase transformation


- In DIGM, diffusion induces the movement of grain boundaries, and let eventually an enriched zone behind it
- In the proposed mechanism, movement of the grain boundaries is due to the phase transformation
- Moving grain boundaries will cross a large volume in which lateral diffusion is possible. Due to the structure of the grain boundary, nucleation of precipitated is easier and are leading to sinks for Nb
- Consequently, the movement of the grain boundary leads to enhanced precipitation with very high density
- The prerequisite for this mechanism is not the presence of precipitates, but the availability of Nb able to precipitate. The movement of the grain boundary acts as a trigger and a "concentrating" mean

Nb

"Reverse" DIGM / discontinuous precipitation combined with phase transformation

Proposed mechanism

