Effect of Intercritical Annealing Time on γ→a Transformation during Cooling in Cold-rolled Dual Phase Steels

2008/3/28

Steel Research Laboratory, JFE Steel Corporation

OYuki Toji, Katsumi Nakajima, Takako Yamashita, Kaneharu Okuda, Hiroshi Matsuda, Kohei Hasegawa and Yasushi Tanaka

Introduction

Cold-rolled Dual Phase steels (DP steel)

····excellent balance with high strength and good formability

 \Rightarrow from manufacturing prospective,

the stability of mechanical properties is important to achieve high accuracy of car parts

Introduction

To control the mechanical properties,

Precise microstructural control during continuous annealing lines

<u>is necessary</u>

Effect of intercritical annealing time on TS

TS decreases with a decrement of annealing time
Difference of the TS between specimens with different annealing time is larger at a lower Tq

Effect of intercritical annealing time on microstructure

Change in V_M shows a good agreement with the influence of annealing time on TS \rightarrow Change in TS with the annealing time is mainly caused by a change in V_M Intercritical annealing time at 1073K affects the mechanical properties of

cold-rolled DP steels through the change of microstructure

To clarify the effect of the intercritical annealing time on microstructures of cold-rolled DP steels

(1) $\alpha \rightarrow \gamma$ transformation during intercritical annealing

(2) Subsequent $\gamma \rightarrow \alpha$ transformation during cooling

Experimental procedures

 \diamond Microstructure \cdots SEM \Rightarrow the volume fraction of martensite

◆ Elemental analysis · · · EPMA \Rightarrow the distribution of alloying elements

(1) $\alpha \rightarrow \gamma$ transformation during intercritical annealing

(2) Subsequent $\gamma \rightarrow \alpha$ transformation during cooling

$\alpha \rightarrow \gamma$ transformation during annealing

Before annealing (cold-rolled steel)

100s

1000s

Relationship between V, and annealing time

Volume fraction of γ is almost saturated more than 250s

It can't be explained only by the volume fraction of γ during annealing Change in the distribution of Mn,Si during annealing was investigated

Distribution of Mn, Si before annealing

Before annealing, Si,Mn are distributed almost uniform

Partitioning of Mn during annealing

<u>Mn concentrates into γ (M) following the nucleation and growth of γ </u>

Partitioning of Si during annealing

Si concentrates into α following the nucleation and growth of γ

Change in y fraction and Mn distribution during annealing

Before 500s, γ is considered to be in a metastable state

 \Longrightarrow Difference of Mn concentration in γ affects the $\gamma \rightarrow \alpha$ transformation

Contents

(1) $\alpha \rightarrow \gamma$ transformation during intercritical annealing

(2) Subsequent $\gamma \rightarrow \alpha$ transformation during cooling

Influence of Mn distribution on $\gamma \rightarrow \alpha$ transformation during cooling

 $\gamma \rightarrow \alpha$ transformation rate is faster in the specimen with low Mn concentraiton in γ

Conclusion

To clarify the effect of the intercritical annealing time on microstructures of cold-rolled DP steels, $(1) \alpha \rightarrow \gamma$ transformation during intercritical annealing, and (2) Subsequent $\gamma \rightarrow \alpha$ transformation during cooling were investigated

1. At the early stage of $\alpha \rightarrow \gamma$ transformation during annealing at 1073K, substitutional alloying elements hardly diffuses, and substitutionals continue to partition even after the volume fraction of γ reaches to equilibrium value.

2. Although the volume fraction of γ is almost same before cooling, the $\gamma \rightarrow \alpha$ transformation kinetics differs depending on the Mn concentration in γ . It was found that the specimen with lower Mn concentration in γ after annealing shows the faster transformation behavior.