EBSD in TEM : Introduction to ASTAR system

Orientation and Phase Mapping with Transmission Electron Microscopes

Muriel Veron, Edgar Rauch, Laboratoire

CNRS / Grenoble - INP

- ACOM/TEM : Automated Crystal Orientation Mapping on TEM
- 'DigiSTAR' : Precession tool for TEM SNanoMEGAS

Nanocrystalline Al

Grenchle

TRIP steel with retained austenite

Deformed austenite (Fe-Ni alloy), EBSD quality contrast, and TEM observations 200 μm; Map3; Step=1 μm; Grid601x23 EBSD index quality contrast Joint de 10 grains désorientation point par point Désorientation (°) 8 • désorientation cumulée 6 4 2 **BF TEM observations** 200 400 600 800 1000 1200 1400 Grenoble Dénlacement (nm Alumni-2010 Avignon

1) Example of application in metallurgy

Recrystallization of ferritic stainless steels

Collaboration with N. Meyer, Ugitech

2) ACOM/TEM

Template matching

Template generation and pattern acquisition

3) ASTAR

Combining orientation/phase identification with Electron Precession

Microstructural optimization for magnetic actuators

- Ferritic Stainless steel 430 (A1 = 880°C)

- Stabilized Ferritic stainless steel: 430Nb (feriitic at all T)

Deformed state

Static recovery 200 µm

Static recrystallization

<u>Recovery</u>

time (s)

Grain sca

Subgrains

210

200

190

180

170

160

150 140

130 120

1

H Z

- Recrystallization mechanism
 - Nucleation
- · We did not observed large misorientation, even in recovered area

• Identification of the precipitation at the GBs (alloy 430) :

Phase identification: carbides (blue), and nitrides (red)

2) ACOM/TEM : Automated Crystal Orientation Mapping

cnrs

ACOM/TEM : Automated Crystal Orientation Mapping

Kikuchi pattern

Orientation Ω

Bragg Spot pattern

Orientation $\Omega + \Omega' (= \Omega + 0.1^{\circ})$

CINIS

ACOM/TEM : Orientation Indexing

ACOM/TEM : Crystallographic orientation identification

ACOM/TEM : Reliability

ACOM/TEM : Phase identification and reliability

TEMdpa : Diffraction Pattern Acquisition

'Bright field' : Heavily deformed $Cu(\varepsilon=8)$ (ECAP)

Virtual bright field

Bright field

Reliability

14 nm

ACOM : some examples of orientation maps

Deformed Cu (coll. N. Llorca – Univ. Barcelona, Spain)

Correlation Index

Orientation reliability

Phase Reliability

Orientations

Grenoble

Fe 1.67% C (HT 10 min @ 1100°C, A. Stormvinter - KTH)

Austenite M

nite Martensite

site

ACOM/TEM combined to a FEG-TEM

JEOL 2010F Texas Material Institute UT, Austin

180 nm Cu lines

Virtual bright field

Orientation map

Correlation Index map

Pt nanocrystals

Grenoble

1) ACOM/TEM :

Template matching

Grenoble INP

Pattern acquisition and template generation

2) ASTAR :

Combining orientation/phase identification with Electron Precession

Precession Electron Diffraction patterns (R. Vincent, P.A. Midgley, Ultramicroscopy 53 (1994) 271.)

Precession Electron Diffraction patterns

Mayenite crystal ($Ca_{12}AI_{14}O_{33}$) : space group I-43d

Without precession

Deformation of Aluminum film

Grenoble INP

Good results were obtained with a precession angle α = 0.9°

Thick sample, same area, diffraction patterns with kikuchi lines. Without precession, quality is poor, with precession α = 0.9°, diffraction patterns are « cleaned », and indexing

cnrs

cnrs

ACOM + Precession: Solving 180° orientation ambiguities

ACOM + Precession: Solving 180° orientation ambiguities

DiffGen : Template generator

cnrs

Same area with (Y) and without (I) precession

TRIP steel (ferrite + austenite) ; Philips CM120 @ 100hz (6 min),

Grenoble

INDEX : pattern identification software

cnrs

cnrs

ACOM : some examples of orientation maps

Nanocrystalline Al

Bright field images

Deformed steel

Severely deformed Cu

Grenoble

Orientation maps

Grain size and Texture in 80 nm copper lines

500x100 steps (6.5 nm each) , Spot size 25 nm Scanning time : 19 min (44 fps)

Grenoble

Side view

300x100 steps (6.5 nm each), spot size 15 nm Scanning time : 12 min (44 fps)

SIDE VIEW (orientation and index superimposed map) The two scans were performed with different settings They demonstrated the reproducibility of the identification CROSS VIEW (orientation map)

Grain size of the order of 30 nm may be identify despite the use of a conventional LaB6 equipped Jeol 3010 TEM (spot size 25 nm). A fiber texture was detected within the channel.

250x100 steps (13 nm each) LaB6 equipped Jeol 3010 TEM (spot size 25 nm) Scanning time : 10 min (44 fps)

Indexing Fourier transform of High resolution TEM images

ACOM/TEM : Automated Crystal Orientation Mapping

Fe 1.67% C (HT 10 min @ 1100°C, A. Stormvinter - KTH)

cnrs

ACOM : orientation and phase maps

TRIP steel with retained austenite

Orientation maps

Grenoble

Virtual bright field

Correlation Index

Phase + reliability

ACOM : some examples of orientation maps

Deformed Cu (coll. N. Llorca – Univ. Barcelona, Spain)

Bright field

Correlation Index

Reliability

Orientations

Severely Deformed Fe (coll. S. Descartes – LaMCoS, Lyon - France)

GrenobleIINP

5				9	2	6		
	4	7						
			1				4	5
4			7	1		9		
8	3				4		1	
	8	9						
				6		2		
		2		8		7		

Grenoble INP

ACOM/TEM : four steps

DiffGen : Template generator

Grenoble

Deconvolution of superimposed Diffraction patterns

TEMdpa : Virtual Bright Field on-line construction

TEMdpa : Virtual Bright Field on-line construction

Bright field image

Grenoble

Aluminium (mean grain size 200nm)

Orientation map

Virtual bright field image

