

Carbon Enrichment during Ferrite Transformation in Fe-Si-C alloys

<u>Hui-Dong WU¹</u>, Goro MIYAMOTO², Zhi-Gang YANG¹, Chi ZHANG¹, Hao CHEN¹ Tadashi FURUHARA²

¹ School of Materials Science and Engineering, Tsinghua University, China ² Institute for Materials Research, Tohoku University, Japan

Proeutectoid Ferrite and followed Pearlite transformations

Non partitioning growth model

★Para equilibrium (PE)★Negligible partitioning LE(NPLE)

Vertical phase diagram (Fe-2Mn-C)

Ferrite transformation in Fe-Si-C alloys

•Previous studies

4

Objective

To clarify the ferrite transformation mechanisms by characterizing its kinetics and element partitioning behavior in Fe-Si-C alloys

Experimental Procedure

Alloys

Allow	Comp	osition, n	, mass%	
Alloy	С	Si	Fe	
1.5Si	0.375	1.48	Bal.	
3Si	0.379	3.09	Bal.	

Microstructure observation: Optical Microscopy (OM), SEM, EBSD

■Volume fraction measurement Point counting (SEM)

Composition measurement FE-EPMA

Microstructure

*All Specimens are transformed for 10 min

*GBF: grain boudary α ; WF: Widmanstatten α ; M(A): martensite (prior γ)

Transformation Kinetics *Kinetic Transition occurs when reaching NPLE limit

Carbon Enrichment at GBF/ γ , WF/ γ interfaces

*GBF: grain boudary α ; WF: Widmanstatten α

*Specimen: 3Si alloy at 800 C for 10 min

Summary on Carbon Enrichment at GBF/ γ , WF/ γ interfaces

*GBF: grain boudary α ; WF: Widmanstatten α

Non-partitioned α growth stage:

- GBF/ γ : agree with NPLE prediction
- WF/ γ : deviate from NPLE, deviation gradually diminish

When Si starts partitioning

• GBF/ γ , WF/ γ : Both gradually increase

Summary on Carbon Enrichment at GBF/ γ , WF/ γ interfaces

*GBF: grain boudary α ; WF: Widmanstatten α

*Note: Focusing on *non-partitioned* α growth stage

Effect of Interface Coherency on Carbon Enrichment

*GBF: grain boudary α ; WF: Widmanstatten α

Discussion: agreement with NPLE limit

*The diffusivity along γ grain boundary is used (Fridberg *et al.* (1969), *Jern. Ann.*)

Spike development Possible if diffusion in both austenite and interface is involved

Discussion: where the additional dissipation came from?

Coherent interface, compared with incoherent ones,

- *M* is smaller, $\Delta G(\text{intrinsic friction})$ is *larger*
- Fewer site for segregation and migrate slower, $\rightarrow \Delta G$ (solute drag) is *smaller*

Discussion: a discussion on α/γ interface mobility

• From GBF thickness change, estimate \mathbf{v} of coherent GBF/ γ

15

From WF thickness change, estimate ν of WF/γ

Discussion: α/γ interface mobility estimation

•NPLE limit gives well description on:

- Carbon enrichment of incoherent GBF/ γ interface during non-partitioned growth stage;
- α transformation kinetics transition.
- •Deviation of C enrichment at coherent GBF/ γ and WF/ γ interfaces from NPLE limit at beginning stage is observed. Such deviation is mainly caused by intrinsic friction.
- •Mobility of coherent GBF/ γ and WF/ γ are estimated and is compared with the expressions for incoherent α/γ interfaces.

Slide 19: Mn, Si comparison Slide 20-21: Effect of Si partitioning

Slide 23: Equations used estimating GBF/gamma interface velocity *Slide 24:* Measurement of WF thickness

	$lpha$ / γ stabilizer	Interaction with C
Mn	γ	Attractive
Si	α	Repulsive
1		
Supp	ressing θ precipitation	l
Widel	y added in transforma	tion induced plasticity

Ferrite transformation

• Effect of morphology and holding time

20

3Si alloy at 800 °C

• Effect of morphology and holding time

3Si alloy at 800 °C

- ✓ For carbon enrichment
 - GBF agrees well with NPLE limit during non-partitioned lpha growth
 - WF deviates from NPLE limits and the deviation gradually diminishes .
- ✓ Si partitioning is observed for prolonged reaction and higher C% corresponds to a lower Si% at the interface

Equations used estimating GBF/gamma interface velocity

$$d_{\rm GBF} = \frac{\sqrt{\pi}}{4} f_{\rm GBF} \cdot d_{\gamma}$$

$$d_1 = \alpha \cdot (t_1 - \Delta t)^{0.5}$$
 (2)

(1)

$$d_2 = \alpha \cdot (t_2 - \Delta t)^{0.5} \tag{3}$$

$$\alpha = \sqrt{\frac{d_2^2 - d_1^2}{\Delta t}}$$
(4)
$$v = \frac{d_2^2 - d_1^2}{\Delta t \cdot d_1}$$
(5)

Measurement of WF thickness

Ref:

Chang, L. and H. Bhadeshia (1995). "Austenite films in bainitic microstructures." Materials Science and Technology 11(9): 874-882. WF thickness measurement: LT is shortest distance perpendicular to the longitudinal dimension of the WF plate at half length site ($L_{\rm T}$). The same procedure is repeated for >30 different plates for each specimen and results are averaged.

The relationship** follows, $L_{\rm T} = 2t$

**C. MACK: Proc. Camb. Philos. Soc., 1956,52, 246.