

ROYAL INSTITUTE OF TECHNOLOGY

Carbon segregation and partitioning between martensite and retained austenite in steels

Jiayi Yan

Dept of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden

Outline

•••hero-m

FTECHNOLOGY

Part II. Interfacial kinetics: some general features

- Phenomenological description
- Unary system:
 - Velocity—temperature—driving force v=v(T, DF)
- Alloy system:
 - v(T,DF) and solute partitioning

Unary system: v(DF)

ROYAL INSTITUTE OF TECHNOLOGY

Crystal-vapor interface

• Crystal-liquid interface

- Solid-solid phase transformation is restrictive because of v(T, DF(T))
- Insight from grain boundary and dislocation b/c DF can be independent of T

Dislocation: v(DF)

ROYAL INSTITUTE OF TECHNOLOGY

Predicted dependence of interfacial velocity on the effective interfacial force. The low-velocity regime is modeled after thermally activated dislocation slip, whereas phonon-drag mechanisms control the high-velocity growth rate.

D. Haezebrouck, PhD thesis, MIT (1987)

Similar v(DF) relationship to interface, although physical mechanism quite different

V(T): thermal—athermal transition?

Fig. 3. New information on the mobility of α/γ interfaces obtained from the massive transformation. (+): $\gamma \to \alpha$ in Fe, Liu et al. [9], (O): $\gamma \to \alpha$ in Fe–Co and (∇): $\gamma \to \alpha$ in Fe–Mn, Liu et al. [7], (\blacksquare): $\alpha \to \gamma$ in Fe–Ni, (\square): $\gamma \to \alpha$ in Fe–Ni, (\blacksquare): $\alpha \to \gamma$ in Fe–Mn and (\triangle): $\gamma \to \alpha$ in Fe–Mn [15].

Q=Q(DF): a toy model (phenom.)

ROYAL INSTITUTE OF TECHNOLOGY

•••hero-m

Q=Q(DF) in reality for dislocation

Q=Q(DF) in reality for dislocation

Small-angle grain boundary

V(T,DF), dislocation or SAGB

ROYAL INSTITUTE OF TECHNOLOGY

And other mechanisms (atomic shuffle...)

V(T,DF), phenom.

Multiple mechanisms?

OF TECHNOLOGY

Solute interactions with...

- - Dislocation:
 - Yielding phenomena and strain aging
- Interface (Cahn, Hillert&Sundman...)
 - Low-velocity-high-drag to high-velocity-low drag

••hero-m

Interface velocity as drag-mode filter

1 interface + 1 solute:

Intrinsic behavior High velocity, low drag Low velocity, high drag

1 interface + 2 solutes(C,M)

Intrinsic behavior High velocity, low (C,M) drag Medium velocity, high C drag, low M drag Low velocity, high (C,M) drag

2 interfaces + 2 solutes: up to 6 options?

OF TECHNOLOGY

Solute interactions with...

- Dislocation:
 - Serrated flow (Portevin-le Chatelier effect)
 - quasi-periodic arrest and release processes

• Interface ?:

Constant T

 Non-steady-state solution, loss of stability

Constant T

••hero-m

ROYAL INSTITUTE OF TECHNOLOGY

FIGURE 3.93 Reconstruction from many field ion micrographs of a heavily ledged Co₂Ta precipitate. (From Hildon, A. et al., *J. Microsc.*, 99, 41, 1973. With permission from John Wiley & Sons.)

Aaronson, Enomoto, Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys (2010)

Anisotropic solute-drag

Reminder:

- Base-c ↗, H_{migr} ↗
- Low-velocity-highdrag has higher H_{migr}

Anisotropic solute-drag

F TECHNOLOGY

Summary (Part II)

Unary system:

- V(DF) relationship can be nonlinear and depends on interfacial structure
- V(T): thermal \rightarrow athermal transition exists
 - Need Q(DF) when DF is large
- Multiple relationships possible
- Dislocation dynamics and other interfaces inspire laws of solid-solid intrinsic interface (clean) and soluteelement interactions with it

