

# A new heat treatment design for medium Mn steel: <u>the austenitization from pearlite</u>

#### Zenan Yang<sup>1</sup>, Masato Enomoto<sup>2</sup>, Hao Chen<sup>1</sup>, Chi Zhang<sup>1</sup>, Zhigang Yang<sup>1</sup>

School of Material Science, Tsinghua University, Beijing 100084, China
 Emeritus Professor of Ibaraki University, Hitachi 316-8511, Japan

2017.6.27



### **Ferrite Transformation-PLE mode**





### **Ferrite Transformation-NPLE mode**









## **Ferrite Transformation**



#### **1D model**



## **Pearlite Transformation**

#### **Interface migration**



Lamellar Spacing

$$\begin{array}{c} \mathbf{\hat{\gamma}} \\ \mathbf{\hat{\gamma}} \\$$

<u>1. Which path works for carbon?</u>
<u>Which for alloying elements?</u>
<u>2. Is there transition between</u>

different modes?



 $\odot$ 

#### **PFM\_Phase Field**

#### **Fe-0.81C** $T=675^{\circ}C$ $t=0.005^{\circ}s$









## **PFM\_Diffusion Path**





 $\odot$ 

### **PFM\_Phase Field**

#### **Fe-0.69C-1.80Mn** T=650°C t=0s



per\_923\_Fe-0.69C-1.8Mn\_Dgb-Mn155000-C96851\_phas.mcr, X: 1 to 320, Y: 1 of 1, Z: 1 to 600, Time: 0s





 $^{\circ}$ 

### **PFM\_Phase Field**

#### **Fe-0.69C-1.80Mn** T=650°C t=0.02s



per\_923\_Fe-0.69C-1.8Mn\_Dgb-Mn155000-C96851\_phas.mcr, X: 1 to 320, Y: 1 of 1, Z: 1 to 600, Time: 0s





 $^{\circ}$ 

### **PFM\_Phase Field**

#### **Fe-0.69C-1.80Mn** T=650°C t=0.04s



per\_923\_Fe-0.69C-1.8Mn\_Dgb-Mn155000-C96851\_phas.mcr, X: 1 to 320, Y: 1 of 1, Z: 1 to 600, Time: 0s





### **PFM\_Phase Field**

#### **Fe-0.69C-1.80Mn** T=650°C t=0.06s



per\_923\_Fe-0.69C-1.8Mn\_Dgb-Mn155000-C96851\_phas.mcr, X: 1 to 320, Y: 1 of 1, Z: 1 to 600, Time: 0s









TSINGHU H



| Temperature //°C | Growth rate $/\mu m \cdot s^{-1}$ |       | Partition coeffcient $k^{\theta/\alpha}$ |      |
|------------------|-----------------------------------|-------|------------------------------------------|------|
|                  | Exp.                              | Sim.  | Exp.                                     | Sim. |
| 650              | 0.15                              | 2.95  | 1.3                                      | 1.1  |
| 660              | 0.042                             | 0.11  | 2                                        | 2.36 |
| 670              | 0.01                              | 0.024 | 3.4                                      | 3    |



## **PFM\_Summary**

1. In Fe-C binary system, the diffusion path of carbon includes austenite, ferrite and  $\gamma/p$  interface. Bulk diffusion dominates the transformation at higher temperature, while boundary diffusion becomes important at lower temperature.

2. The pearlite transformation of Fe-0.69C-1.80Mn ternary system is controlled by C diffusion at  $650^{\circ}$ C, while by Mn (boundary) diffusion at  $670^{\circ}$ C.



## Austenitization from pearlite







## Austenitization\_Dictra

Fe-0.80C-1.08Mn T<sub>ptr</sub>=692<sup>o</sup>C Lamellar pearlite PNTT-I=721<sup>o</sup>C







#### Austenitization\_Dictra





## Austenitization\_Dictra

#### Fe-0.69C-1.80Mn

#### **Spherodized pearlite**

#### Tptr=660<sup>0</sup>C

#### **PNTT-I=750<sup>o</sup>C**







## Austenitization\_PNTT-II















## **Medium Mn steel**



Pearlite transformation

Partition of Mn

Austenitization T>PNTT-II

Non-uniform distribution

Quench

MA dual phase



### **Medium Mn steel**

#### Fe-0.6C-1Mn

#### 800°C-1.1s

#### Fe-0.6C-2Mn 800°C-1.4s



李昭东. 变形和合金元素对钢中奥氏体组织形成和分解相变的影响:清华大学, 2012.





1. Pearlite transformation is simulated via PFM. Compared with bulk diffusion, boundary diffusion of C and Mn plays an important role in the kinetics of transformation and partition of Mn between ferrite and cementite

2. A new heat treatment design for medium Mn steel is proposed. A non-uniform distribution of Mn is created by austenitization from pearlite, and the subsequent quenching may lead to a M&A dual phase microstructure.



# Thanks for your attention