

2014.5.27 13th ALEMI Workshop @ Kansai Seminar House, Kyoto, Japan

Effects of Mn, Si and N contents on VC Interphase Precipitation in Low Carbon Steels

Y.-J. Zhang¹, G. Miyamoto¹, K. Shinbo¹, T. Furuhara¹
T. Ohmura², T. Suzuki³, K. Tsuzaki³

¹Tohoku University, Japan

²National Institute for Materials Science, Japan

³Kyushu University, Japan

Precipitation in parallel rows at migrating α/γ interface

SEM image

V-added low carbon steel

Nano-sized carbides formed through interphase precipitation have been recently used to strengthen low carbon steels.

Objective:

The present study aimed to clarify the effects of alloying elements, i.e. Mn, Si and N on VC interphase precipitation in low carbon steels mainly by using three-dimensional atom probe (3DAP).

The effects α/γ orientation relationship (OR) should be investigated at first to eliminate its influence.

Experimental

Alloys (mass%)

	С	V	Mn	Si	N (ppm)
Base	0.095	0.43	1.49	0.047	10
Low Mn	0.09	0.43	<u>0.69</u>	0.048	11
High Si	0.093	0.43	1.30	<u>0.41</u>	11
High N	0.092	0.42	1.52	0.05	<u>147</u>

Microstructural characterization

- Optical microscopy (OM)
- Electron backscattering diffraction (EBSD)
- Focused ion beam (FIB)
- Three-dimensional atom probe (3DAP)

Optical microstructure

Three-dimensional V atom map WF GBF $(\Delta\theta = 0.8 \text{deg.})$ $(\Delta\theta = 19.2 \text{deg.})$

GBF: grain boundary α ; WF: Widmanstatten α ; M(γ): martensite

 α -orientation map

O: Near K-S Δ: Non K-S PAGB: prior γ grain

boundary

VC 20nm 20nm

• Almost no VC precipitate is formed at near K-S α/γ interface, while sheet-like VC interphase precipitation occurs at non K-S α/γ interface.

[1] Y.-J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, Scripta Mater. 69 (2013) 17.

Parameters for cluster analysis: $d_{max} = 1.0$ nm, $N_{min} = 15$

- As α/γ OR deviates from the exact K-S, the number density of VC increases significantly at first and remains almost constant later.
- The effects of α/γ OR on the size of VC is relatively small.

[1] Y.-J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, Scripta Mater. 69 (2013) 17.

With deviation from the exact K-S OR

- Higher α/γ interfacial energy
- Higher interfacial diffusivity of V
- Severe segregation of V

Nucleation rate of VC increased at non K-S interface

GBF: grain boundary α , WF: Widmansttaten α , BF: bainitic α , M(γ): martensite

- GBF is formed along PAGBs with some WF in the Base alloy at 923K.
- WF or BF formation is promoted with lower Mn content, and suppressed with higher N content.
- ullet α transformation is promoted by decreasing Mn content at 993K.

 No great change in VC number density is obtained by changing the alloying contents.

- By decreasing Mn or increasing Si content, the number density of VC increases, while the size of VC becomes refined.
- No great change is obtained by increasing the N content.

- Lower Mn or higher Si content tends to increase the interfacial C concentration, and thus increase the driving force for VC precipitation.
- V(C, N) tends to be more thermodynamically stable than VC in α .

- The driving force for VC precipitation increases at lower temperature.
- At the same temperature, higher N, lower Mn or higher Si content increases the driving force for VC precipitation.
- The number density of VC appears to be strongly dependent on the driving force of its precipitation.

The effects of Mn, Si and N contents on VC interphase precipitation in low carbon steels were investigated in the present study. The conclusions are summarized as follows:

- 1. VC interphase precipitation does not occur at near K-S α/γ interface, while large deviation from the exact K-S OR is necessary for it to take place in low carbon steels partly caused by the severe segregation of V at non K-S α/γ interface.
- 2. At 923K, almost no change in the number density of VC precipitates can be obtained by decreasing Mn or increasing Si, N contents; while at 993K, lower Mn or higher Si causes VC interphase precipitation to be finer.
- 3. The alloying effects on the number density of VC interphase precipitation can be well explained in terms of the driving force for its precipitation.