Kinetic Transitions in Fe-Mn-C Alloys

Hatem Zurob, Gary Purdy, Hossein Seyedrezai, McMaster University Chris Hutchinson, Monash University Yves Brechet, INP Grenoble

Outline

- Decarburization as a method of studying the $\gamma \rightarrow \alpha$ transformation.
- Summary of results on Fe-Ni-C.
- New results on Fe-Mn-C
 - Fe-1%Mn
 - Fe-0.5%Mn
 - Fe-2%Mn
- Possible Interpretations
- Conclusions

The Decarburization Approach: *> Background:*

The rate of interface motion is given by:

$$\frac{dz}{dt} = \frac{J_i^{\alpha} - J_i^{\gamma}}{C_i^{\gamma} - C_i^{\alpha}}$$

This differential equation has an analytical solution of the form:

$$z = B\sqrt{t}$$

$$B = f(C_i^{\alpha}, C_i^{\gamma}, C_o)$$

> Ternary Alloys.

> Ternary Alloys: ParaEquilibrium Limit.

> Ternary Alloys: NPLE Limit.

Summary of Results on Fe-Ni-C

Fe-Ni-C alloys seems to follow LE-NP kinetics at all the temperatures and compositions investigated

Fe-C-Ni: decarburization kinetics

Fe-C-Ni: diffusion couples

Phillion, Zurob, Hutchinson, Guo, Malakhov, Nakano and Purdy, Metall Trans., 35A, 1237-1242, 2004.

775°C for 4 min.

1.95% 2.85% 1.89 +/- 0.33

Fe-C-Ni: diffusion couples

Phillion, Zurob, Hutchinson, Guo, Malakhov, Nakano and Purdy, Metall Trans., 35A, 1237-1242, 2004.

New Results on Fe-Mn-C

Fe-0.5%Mn-C: Paraequilibrium at high Temperatures, unclear at low T.

Fe-1%Mn-C: Definite transition from LENP to PE as the temperature increases.

Fe-2%Mn-C: Ferrite forms above the LENP limit, but at a rate smaller than that predicted by PE.

Fe-0.5%Mn-C

Fe-C-Mn: 0.40%Mn-0.38%C

838°C, 32min, PE

810°C, 32min, PE


```
Fe-1%Mn-C
```


Blue dots show experimental data obtained by decarburizing a long sample in a temperature gradient for 32 min.

Fe-2%Mn-C

Fe-C-Mn: 2%Mn-0.6%C

Fe-C-Mn: 2%Mn-0.6%C

Fe-C-Mn: 2%Mn-0.6%C

Fe-C-Mn: T vs. Mn content map

Possible Interpretations

- We need an interpretation that accounts for:
 - Difference between the behaviors of Fe-Mn-C and Fe-Ni-C.
 - Accounts for the transition between PE and LENP.
 - Explains long-lived intermediate states between LENP and PE.

Possible Interpretations

Important Role of Segregation:

Possible Interpretations

Important Role of Segregation:

Challenges:

Temperature dependence is problematic:

- As T increases, segregation should become weaker. At the same time D become larger. Both factors should favor LENP at high T.
- Concentration dependence is also difficult to explain.

Solute Drag

Segregation would lead to the development of solute drag.

Conclusions:

Kinetic transitions are observed in the Fe-Mn-C system during decarburization.

It appears that segregation to the interface plays an important role in determining the ferrite growth kinetics.

Additional modeling is needed to rationalize the data.

Acknowledgements

Dr. T. Furuhara is gratefully acknowledged for providing the Fe-2%Mn-0.6% Alloy.

Financial support of ISIJ is gratefully acknowledged.

This research was funded by the Natural Science and Engineering Research Council (NSERC) of Canada.