INTRODUCTION

This series of motor, with its shell made of ductile cast iron of adequate intensity, can be applied to situations with less load and interval operations, widely to agriculture, forestry, plastics, machine tools and min machines, such as the mould height adjustment of the injection, molding machine, the cleaner, the saw the worktable etc.

CHARACTERISTICS

1. The output shaft, with the deep groove ball bearing, can bear certain axial force and radial force
2. With the axial oil distribution, structure, it is of smaller size and less weight.
3. With two inner check valves, no drain connection.
4. With cycloid group with the roller, it has a small friction and high mechanical efficiency.

APPLICATION

- Conveyors
- Metal working machines
- Textile machines
- Feeding mechanism of robots and manipulators
- Machines for agriculture
- Food industries
- Grass cutting machinery etc.

SPECIFICATION DATA

<table>
<thead>
<tr>
<th>TYPE</th>
<th>OHR-50</th>
<th>OHR-80</th>
<th>OHR-100</th>
<th>OHR-125</th>
<th>OHR-160</th>
<th>OHR-200</th>
<th>OHR-250</th>
<th>OHR-315</th>
<th>OHR-400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement (ml/r)</td>
<td>51.7</td>
<td>80.5</td>
<td>100.5</td>
<td>126.3</td>
<td>160.8</td>
<td>200.9</td>
<td>252.6</td>
<td>321.5</td>
<td>401.9</td>
</tr>
<tr>
<td>Max Pressure Drop (Mpa)</td>
<td>cont.</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>int.</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>peak.</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Max torque (Nm)</td>
<td>cont.</td>
<td>93</td>
<td>152</td>
<td>194</td>
<td>237</td>
<td>310</td>
<td>369</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>int.</td>
<td>118</td>
<td>189</td>
<td>236</td>
<td>296</td>
<td>378</td>
<td>450</td>
<td>470</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>peak.</td>
<td>135</td>
<td>216</td>
<td>270</td>
<td>338</td>
<td>433</td>
<td>509</td>
<td>540</td>
<td>540</td>
</tr>
<tr>
<td>Speed Range (cont.)(r/min)</td>
<td>10-775</td>
<td>10-750</td>
<td>10-600</td>
<td>9-475</td>
<td>7-375</td>
<td>5-300</td>
<td>5-240</td>
<td>5-190</td>
<td>5-160</td>
</tr>
<tr>
<td>Max Flow (cont.)(L/min)</td>
<td>40</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Max Output Power (cont.) (Kw)</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>6.5</td>
<td>6.9</td>
<td>7.0</td>
<td>7.3</td>
<td>7.5</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
<td>11</td>
</tr>
</tbody>
</table>

Intermittent operation the permissible values may occur for max. 10% of every minute
Peak, load: the permissible values may occur for max. 1% of every minute.
OHR Series Hydraulic Motors

Version 4-hole oval flange

<table>
<thead>
<tr>
<th>TYPE</th>
<th>OHR-50</th>
<th>OHR-80</th>
<th>OHR-100</th>
<th>OHR-125</th>
<th>OHR-160</th>
<th>OHR-200</th>
<th>OHR-250</th>
<th>OHR-315</th>
<th>OHR-400</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>141</td>
<td>146</td>
<td>150</td>
<td>154</td>
<td>160</td>
<td>167</td>
<td>176</td>
<td>188</td>
<td>202</td>
</tr>
<tr>
<td>B</td>
<td>9</td>
<td>14</td>
<td>17.5</td>
<td>22</td>
<td>28</td>
<td>35</td>
<td>44</td>
<td>56</td>
<td>70</td>
</tr>
</tbody>
</table>

SHAFT VERSION

P1: Ø25, 8X7X32
Ø25 Cylindrical shaft, parallel key 8X7X32

P3: Ø25.4, 6.35X6.35X32
Ø25.4 Cylindrical shaft, parallel key 6.35X6.35X32

P2: Ø30, 8X7X32
Ø30 Cylindrical shaft, parallel key 8X7X32

P5: Ø32, 10X8X45
Ø32 Cylindrical shaft, parallel key 10X8X45

E-mail: hydraulicmotor@gmail.com
Website: www.orbithydraulic.com
SHAPT VERSION

H1: Ø30, 6-30X25X6
Ø30 Splined shaft, 6-30X25X6

H2: Ø25, 6-25X21X5
Ø25 Splined shaft, 6-25X21X5

H3: Ø25.4, 6-25.4X21.4X6.2
Ø25.4 Splined shaft, 6-25.4X21.4X6.2

ORDERING CODE

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHR</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Displacement
50, 80, 100, 125, 160, 200, 250, 315, 400

2 Shaft
- P1: Ø25, 8X7X32
- P2: Ø30, 8X7X32
- P3: Ø25.4, 6.35X6.35X32
- P5: Ø32, 10X8X45
- H1: Ø30, 6-30X25X6
- H2: Ø25, 6-25X21X5
- H3: Ø25.4, 6-25.4X21.4X6.2

3 Mounting Flange
- A: 4-Ø11, Ø82.5
- A1: 4-Ø11, Ø80
- AII: 2-Ø13.5, Ø82.5
- A1II: 2-Ø13.5, Ø80
- A2III: 4-Ø13, Ø100
- A IV: 4-Ø13.5, Ø82.5

4 Ports
- Y: G1/2, M14X1.5
- Y1: M18X1.5, M14X1.5
- Y2: M22X1.5, M14X1.5
- Y5: 7/8-14 UNF, M14X1.5
- Y8: NPT 1/2, M14X1.5

E-mail: hydraulicmotor@gmail.com
Website: www.orbithydraulic.com
Calculation

Flow lpm: \[\text{Displ (cc/rev)} \times \text{speed (rpm)} \]
\[\frac{\text{1000}}{} \]

Torque [Nm] = \[\frac{\text{Displ (cc/rev)} \times \text{Pr. (Bar or Kg/cm}^2\text{)}}{62.8} \]

Newton meter - Nm

1 daNm = 10 Nm

Power (kW) = \[\text{Torque Nm x rpm} \]
\[\frac{\text{(Fluid motor)}}{9549} \]

Flow versus - rpm
Pressure versus - torque