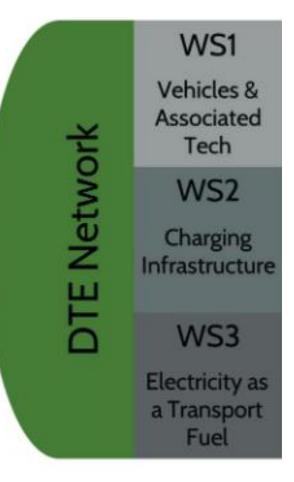


Decarbonising Transport through Electrification (DTE), A whole system approach

Professor Carol Featherston

Professor Liana Cipcigan PI Konstantinos Stamatis, Network Manager Dominic Dattero-Snell, Deputy Network Manager

Southampton



Prof. Manu Haddad Prof. Jun Liang Dr. Pietro Tricoli Prof. Patrick Luk Prof. Xibo Yuan Prof. John Preston Prof. Omer Rana Dr. Dimitrios Potoglou Dr. Georgina Santos Prof. Phil Morgan

https://dte.network

Identify and address challenges for electrification of transport.

DTENetwork

Identify and address challenges for electrification of transport.

DTENetwork

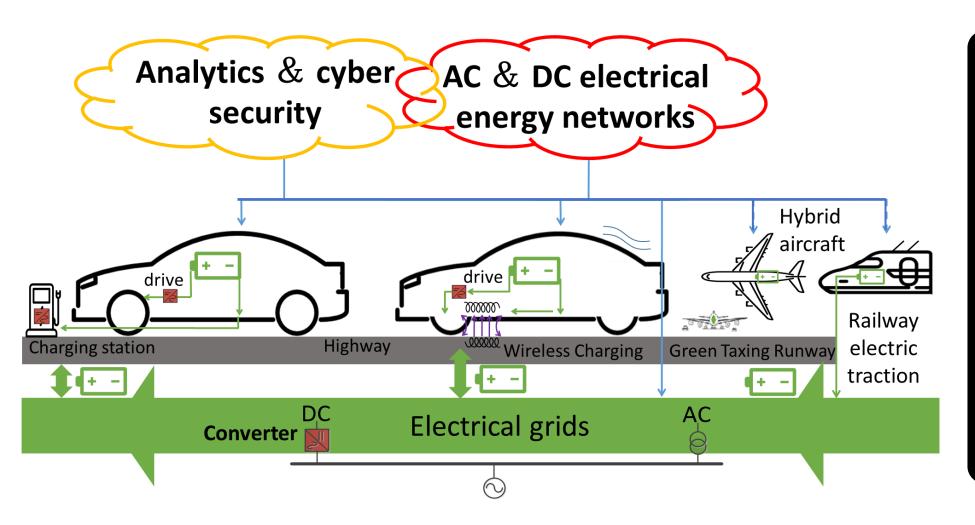
	WS1	Electric Powertrains	
DTE Network	Vehicles & Associated Tech	Connected Autonomous Vehicles Green Taxiing	
	WS2	Building & Charging Solutions	
	Charging Infrastructure	Wireless Charging Railway Feeder Stations	
	WS3	Spatial Distribution	
	Electricity as a Transport	Use of Renewable Energy	
	Fuel	Network Resilience & Efficiency	

Road, Rail & Aerospace

Identify and address challenges for electrification of transport.

DTENetwork

	WS1	Electric Powertrains	WS4
DTE Network	Vehicles & Associated	Connected Autonomous Vehicles	Smart Mobility
	Tech	Green Taxiing	rity
	WS2	Building & Charging Solutions	nent l
	Charging Infrastructure	Wireless Charging	Environm Social Economi & Cyber S
	Infrastructure	Railway Feeder Stations	Envi Eco
	WS3	Spatial Distribution	Dat
	Electricity as a Transport	Use of Renewable Energy	
	Fuel	Network Resilience & Efficiency	


Identify and address challenges for electrification of transport.

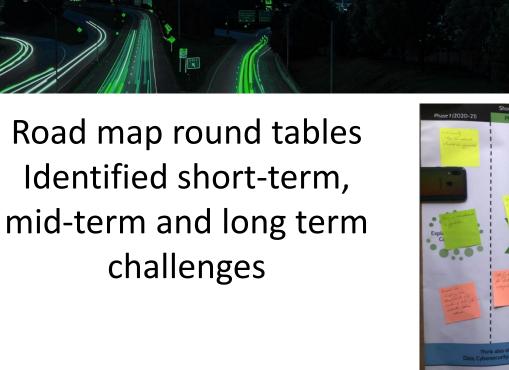
ENetwork

ork	WS1 Vehicles & Associated Tech	Electric Powertrains Connected Autonomous Vehicles Green Taxiing	WS4 Smart Mobility	Achieving Technological Advance Challenges
DTE Netwo	WS2 Charging Infrastructure	Building & Charging Solutions Wireless Charging Railway Feeder Stations	Environment Social Economics Data & Cyber Security	Interventions Transition Technologies Energy Futures
	WS3 Electricity as a Transport Fuel	Spatial Distribution Use of Renewable Energy	Dat	Policy Design & Implementation Community
		Network Resilience & Efficiency		Opportunities

Vision of Whole System Approach

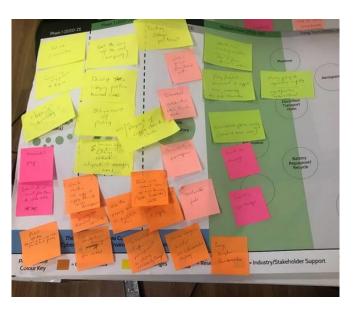
Addressing low-carbon transport modes as an integrated system embedded within the electricity energy vector

Batteries are the heart of Decarbonisation


DTENetwork

- Testing, Modeling, Sizing, Aging
- Development of Standards
- Right chemistry to the Right application
- Asset Management
- Maintenance procedures and health indexes
- Reusing & Recycling

Advisory Board



DTENetwork

https://dte.network/reports

Funded Projects

Optimisation of Intermittent Electrification of Rail Transport for the Near-Term


Dr. Will Midgley, Loughborough University, Hitachi Rail Europe

Published: <u>An investigation into intermittent electrification strategies</u> and an analysis of resulting CO2 emissions using a high-fidelity train <u>model</u>

Data-Driven Approach for Optimal Distribution Network Operation with Rapid Charging Infrastructure and Large-Scale Battery Storage

Dr. Chun Sing Lai, Brunel University London, UK Power Networks

Published: Operational Challenges to Accommodate High Penetration of Electric Vehicles: A Comparison between UK and China

Optimisation of Wireless Charging Infrastructure Deployment for Bus Services

Dr. Panagiotis Angeloudis , Imperial College London, Alan Turing Institute, Transport for London, Innovate UK, EPSRC IAA

ENetwork

The Renewable Powered Railway: Renewable Railway Power Network Design with Optimal Energy Management

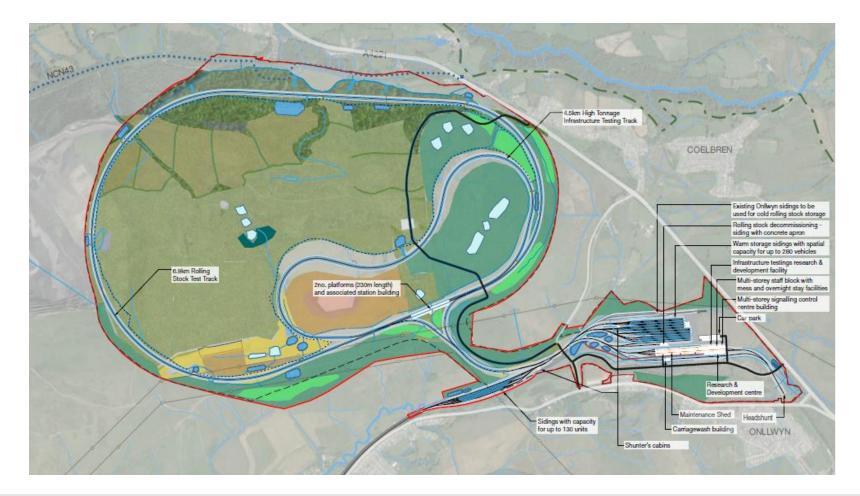
Dr. Zhongbei Tian, University of Liverpool, Riding Sunbeams, Ricardo Energy & Environment

Optimal scheduling of electric vehicle-integrated multi-energy system with high renewable generation

Dr. Mousa Marzband ,Northumbria University, OtaskiES, RINA

Equality, Diversity and Inclusion (EDI) funding call

Funding available: Up to £20,000 of funding (at 80% Full Economic Costs) is available. We are planning to award 2 to 3 projects in this call.


Deadline: 21st of February 2022

Expected start date: 1st of April 202

https://dte.network/edi-call-1

Global Centre of Rail Excellence (GCRE)

- Rail testing complex with 2 electrified oval tracks.
- Testing speeds of up to 110mph with a tunnel section and a full platform environment.

• 7.3km electrified oval track

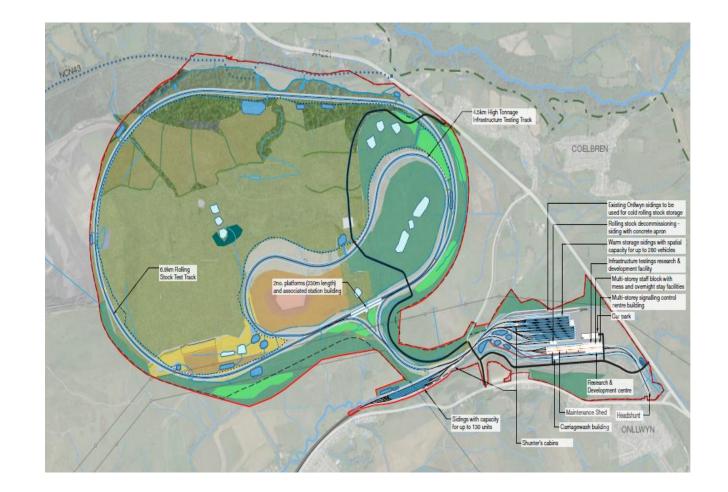
ENetwork

- 3.1km electrified oval track
- Full station & platform environment
- Tunnel section
- Infrastructure testing
- Well equipped maintenance facility
- 500+ vehicle warm storage
- R&D & showcasing
- Decommissioning area
- Hydrogen fuelling station

Global Centre of Rail Excellence (GCRE)

The site is located at the Nant Helen surface mine and Onllwyn coal washery at the head of the Dulais and Tawe valleys.

Timetable Public consultation: summer 2019 and autumn 2020 Planning application submission: spring 2021 Planning approval: summer 2021 Site preparation / construction: 2022 to 2025 Phase 1 operational: 2023 Fully operational: 2025


ENetwork

Earthworks will begin on site in spring 2022 to prepare the land for rail infrastructure.

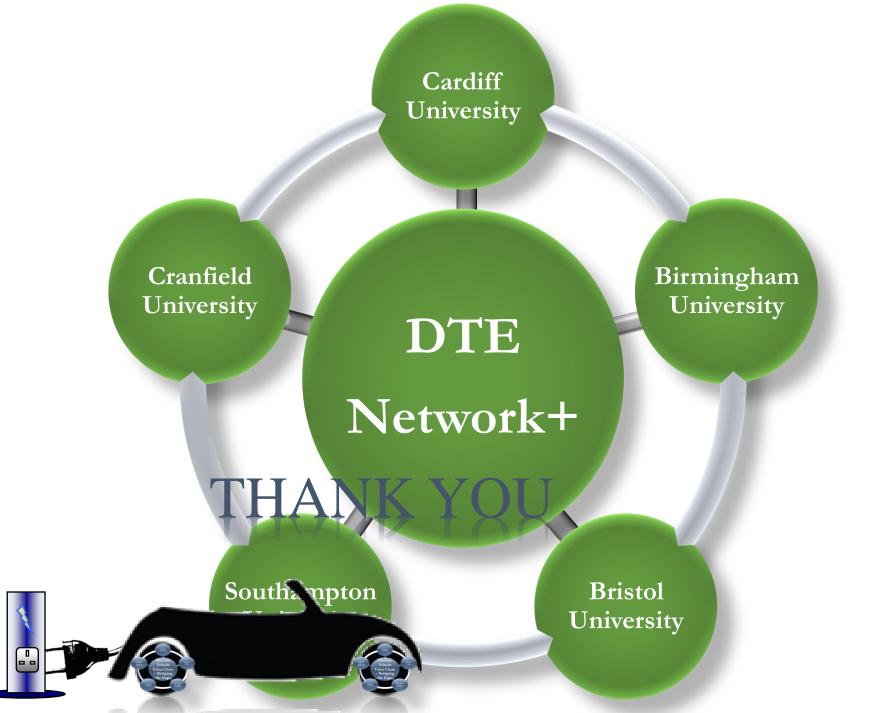
More than a Tests Centre (GCRE)

The GCRE will be

- Unique to Europe
- A Research and Innovation Hub, embedding university research
- Wider than rail
- Energy innovation and generation
- Sustainable solutions for rail and beyond

-Networ

Contact details


Prof. Liana Cipcigan DTE Network+ Leader <u>cipciganlm@Cardiff.ac.uk</u>

Konstantios Stamatis Network Manager <u>StamatisK@Cardiff.ac.uk</u>

https://dte.network/

VISUAL COPYRIGHT ELEANORBEER.COM 2020

https://dte.network/