S ““ELTMaestro

Contents
Graph WOrKflOW ArCRIEECTUIE.....iii it e e e s e e e st e e e s s b te e e e s s teeeesasbeeeesnbeeessnbeeessnsseeeesnasens 3
ELT IM@ESTIO ClIENT ..eneiietee ettt ettt ettt ettt ettt st e s bt e e s bt e e bt e e subeesabeeesabeeaabee e neeesabe e e aseesabeeeabeeesabeesabeeennteesaneeesareesanes 4
) = LT oY= O 1T o | PSPPSR 4
Bl TS AT o1 & o= ol TSR 5
WOTKFIOW (JOD) eureeiiiiiiiittteiee ettt ettt e e e e e et bb b e e e e e e e e e e s babaaeaeeeseeasbaaaeseeeeeeaasssaseseseeseennsssaaseeseseseansssrannens 7
Creating NEW WOTKFIOW/JODoooiiie ettt et e e et e e et e e et e e eate e e aeeesabeeebeeeeseeessesessseesseeenseeesnsesesareeans 7
o [T =Y oY o 3 (o Y AR 7
WOTKFIOW DESIGNEI / EQITON ..veinvieieiie ettt ettt ettt ettt e et e e et e e e bt e e etaeeebeeestaeeetbeeebeeesabeserseeeasseeeabesessseeanseeeasseesseeenseens 7
oo e [¥Tord o] o U OO OO ST PO T OTOR PP PPUOROPPR 7
LYo S Lo L YA @] o T=T = 1 To T s L SR 9
Adding/Deleting/Editing StEPS & FIOW CONLIOLiccviiiiciiciicciie et cte ettt et e st e s teebe e beesteesbaesabesabeebeesbeestaesanesareeans 9
EdIting MaPPING / FIOW ...veiiieiiecic ettt sttt ete et este e et e st e stbesabeebeebe e baesbaestbeeabeenbeabaesbaesasesasesabeenbeeseesaensns 11
F Va1V 7AT o= o 11 o o] I I £ PRSP 13
SIS / INOTES ..ttt ettt ettt e ettt e e ete e eetteeebeeeeteeeebeeeetaeesabeeeasaseeabeseasaeeeataeebeeesabeseteeeasbeeebeeeeateeebeeeanteeebeeearteeennes 14
R @ Yol ' | S S 14
Y - I OO TSRO T PO ST PROPRRRPRR 15
)Y 1 [T P PP PP PP PP UUOPPPPPPPPPPPPPPN 17
YTV ol o OO TP PR OPROPRPR 18
FIIE WWATCK <.ttt sttt et e bt e bt e s et e st e et e e bt e b e e b e e s he e e et e e et e bt e e bt e e re e s an e e r e e neeneennees 19
IDBC WALEN et h e bt s bt s a et et e e bt e bt e ehe e s at e e ab e et e e b e e bt e eh et eateeate e bt e eheeeheeeateeabeebe e beenaeas 20
YL a1 o] [TSP URPOROT 21
L T H=T 0 T [PP TP 24
R I PP PR UST PR PRRPR 25
Y S e AT R DY T Yot =T USSP 26
(6o o1 4 o] I =T OO TP PP SPOPRPR 27
o]« TP PO PR PR 28
(oo | =1 LT TSRS PUT TSR 29
Redshift Stage [REASNITL].....c.uiiiiiiiie e e et e e e et e e e ettt e e e s sabeeeeesnbeeeeesabaeeeenseeeeennseeeeennsees 32
File LOAEr [SNOWTIAKE] ... ittt et e et e e e e e e e abbbe e e e e eeeesasssbaseeeeeeesaassbaseseeeeesasssraaseeeeeenn 34
ONSstage GroUP [SNOWTIAKE]vviii i e e e e e et e e e e s ata e e e s ataee e e ssaeeeeasaeeesnsseeesnssaeesansrneenn 35
LIEL o1 (=R LY e A 2 = o] g ¢ 1 IS 37
FilE LOAUEE [INETEZZA] .. . uuuuureeereieieritiueeeiererrrererererereeeresesesesesesesesssssssesessnnns 38

(@101 Y=L €] o U T o |\ =l o <42 | SRS 39

BIE] LR =Y 2.2) (TSR 41
(O] g1 =T € o TU o I ST o= [[T | SR 42
Data Frame [SPArk SQL] ..eeciciieieiiiiee et ettt e e ettt e e e et e e e e ettee e e sebae e e e abaeeeeaabaeeeeesbaeee e nsaaeeeanseaeeeanseeeeaansaeeeaanseeeeeansreeeennrens 44
Wt |l 1Tl S o= T Y @ 1 I [P UERRPR 46
Spark Data Cache / Persistance [SPArk SQL]ccccuiecieeieeiieieeieesteeiteesteesteesteesteesetesabeeteesseessaesssessseesseetesssesssessseesnsennns 46
D T=To [0 o1 SRR 47
IVIINUS ettt ettt sttt e s ab et e s b et e e s b et e s s e e s et e s e e e s et e s s a e s s b et e s s ra e e s e aras 48
O 1T o OO TP P PP OPPRTOT 49
oY T=Tota o Yo I (D I= o] =Tor: | =Yo) F SRR 52
FAY=f e <4) PP PP PP PPPPPPPPPPPPPPPPPRE 53
B ettt ettt et h et e bt e e bt e e e a bt e e be e e e ab e e s bt e e bt e e e be e ekt e e eh b e e e beeesabeeebeeebbee e be e e hbeeanbeeenteesareennres 54
o 1o OO OP PR OPPRR O 56
FUNCTION Lottt ettt e st e e s e bt e e s b e e e e s b e e e e s ab e e e s s mb e e e s s eabe e e s s mreeessnreeesennrens 62
SCD2 ettt sttt h e bt e h e e ea et et e et e e b e e b e e ehe e SheeeaE e e At e e bt e b e e ehe e eheeea bt e bt e bt e beeeheeeheeeae e e bt e beenheenaeesarenane 64
) 1011 0 Yol o o) ST PPPPRPPPP 67

(600] o) =Tl fl U £ 70

Graph Workflow Architecture

ELT Maestro workflow architecture has nodal hierarchy. For example, a job or workflow can be a node, a step can be a

node, a step of type job can also be a node. There is no limitation on hierarchy level.

For example,

You can design a workflow which can call or second hierarchy level workflow which can execute third hierarchy level

workflow ... and so on. There is no limitation on hierarchy level.

Consider following hypothetical workflow structure diagram.

Figure: ELT Maestro Workflow Hierarchy

[Workflow 1

Y

h 4

[Workiflow 2]

File Watcher Step

A

y

Workflow 4

Workflow 5

Workflow

ELT Maestro Client

Starting Client
When you launch the ELT Maestro Data Integration Client, the Login screen appears as shown below:

Figure: Login Dialog

& ELTMaestro Server Login >
Server Credentials
Server 192.168.1.28
Port 3181
User Name |Eftmaestro
PESSWOI’d SRS
Parameters:
Property Type Info
Server Text Hostname or ip address of ELT Maestro server.
Port Text ELT Maestro server messaging port. Default is 8181.
User Name Text ELT Maestro data integration username. The credentials are not
affiliated with other accounts.
Password Text ELT Maestro data integration user password.

» Click [Login] after entering required credentials.

Upon successful login the Workspace Window should appear. You can then start creating workflow jobs and build
dataflow diagrams.

The Workspace

All created jobs loaded from workspace folder appear on this screen. Workflow jobs can be created or edited from this

screen. This is the first window that appears after successful login.

Figure: Workspace Window

: 5_:-'_‘- ELT Maestro -Workspace

Workflow(s) | Daily Warehouse Metrics

File Administration Runtime & Logs Help
WorkFlow(s)
7 € X
rd [

N JDBC_TO_METEZZA_LOAD Owner INTEGRATOR Success Rate
N' JOB_CHILD1 Owner INTEGRATOR Success Rate
M) JOB_CHILD2 Owner INTEGRATOR Success Rate
N/ JOB_GRANDPARENT Owner INTEGRATOR Success Rate
N' JOB_PARENT1 owner INTEGRATCR Success Rate
N/ JOB_PARENTZ2 Owner INTEGRATOR Success Rate
M/ RPT_NZ_BATCH_STATISTICS Owner INTEGRATOR Success Rate
N/ TEST_RK_IMPORT_NTZ Owner INTEGRATOR Success Rate

Soaik® DELTA_IMPORT_JDBCZ2HDFS Oowner INTEGRATOR Success Rate

soai IMPO RT_TABLES_TO_HDFS Owner INTEGRATOR Success Rate

spoik’ REFRES H_IMPORT_IDBC2HDFS Owner INTEGRATOR Success Rate

Soaik® RPT_EMPLOYEE_COUNT_BY_CITY_SPARK Cwner INTEGRATOR

ELTMaestro Server Connection
Server 127.0.01
Port 8131 User |integrator

» 10073, Success Count:
: 10075, Success Count:

: 10073, Success Count:

: 88%, Success Count: 7

: 10085, Success Count:

; 88%, Success Count 7

: 1007, Success Count:
: 1003, Success Count:
» 10073, Success Count:
: 1007, Success Count:

: 10073, Success Count:

-
i

8

2

8

(k8]

(k8]

Success Rate: 983, Success Count

Quick launch buttons

26w X

From Left to Right
1. Create workflow
2. Refresh workflow list
3. Delete selected workflow(s)
4. Edit workflow configuration

l'v.

5. Open selected workflow designer

Workspace Menu Items

File -> Create Workflow Creates workflow

File -> Exit Exits application

Administration -> Configure Resource configuration
Administration -> Metrics Configuration -> Control Test Configure control test metrics
Administration -> Scheduler Cron scheduler interface
Administration -> Migration -> Export Exports workflow to local system
Administration -> Migration -> Import Imports workflow from local system
Runtime & Logs -> Logging -> Workflow Logs View workflow log history
Runtime & Logs -> Logging -> Server Logs View ELT Maestro server logs
Runtime & Logs -> Reports -> Metrics Report View metrics report

Runtime & Logs -> Runtime Operations Manage ELT Maestro process(s)
Help -> About View product information

Daily Warehouse Metrics
This tab provides system wide summary of historical metrics. Data is aggregated by day and calculations performed on
file size and row counts processed using ELT Maestro.

Figure: Daily Warehouse Metrics Report
i 5_:".'- ELT Maestro -Workspace _ O %

Workflow(s) | Daily Warehouse Metrics

Daily Warehousing Metrics

DATE TOTALWORKFLOWS ROWSDOWNLOADED MNETWORKDATA GB ROWSDELETED ROWSUPDATED ROWSINSERTED
2020-04-20 1 0 0.00 0 0 0

2020-04-19 1 0 0.00 0 0 0

2020-04-18 2 39 0.00 0 0 0

2020-04-17 1 0 0.00 0 0 0

2020-04-16 4 695 0.00 0 0 205

2020-04-15 1 0 0.00 0 0 0

2020-04-14 & 2058452 0.18 114 0 223

2020-04-13 2 2692536 011 0 0 0

Daily Warehousing Metrics (by feature type)

DATE STEFTYPE TOTALWORKFLOWS ROWSDOWMLOADED MNETWORKDATA GB ROWSDELETED ROWSUPDATED ROWSINSERTED
2020-04-15 DATAFRAME 1 0 0.00 0 0 0
2020-04-15 JOIN 1 0 0.00 0 0 0
2020-04-13 SPARKDATACACHE 1 0 0.00 0 0 0
2020-04-14 AGGREGATE 1 0 0.00 0 0 0
2020-04-14 DATAFRAME 1 0 0.00 0 0 0
2020-04-14 JOIN 1 0 0.00 0 0 0
2020-04-14 ONSTAGEGROUP 4 2058452 0.18 114 0 212
2020-04-14 SPARKDATACACHE 1 0 0.00 0 0 0
2020-04-14 TABLE 1 0 0.00 0 0 m
2020-04-13 ONSTAGEGROUP 2 2692536 0.11 0 0 0

Workflow (Job)

Creating New Workflow/Job

Most of ELT mapping design happens on a workflo. Jobs contain steps and mapping lines. Steps are the smallest
purpose-driven objects. Mapping lines link the steps together, control parallelism, order data flow and map columns.

> Click [Create] ‘ﬁ button on workspace to open a new job dialog.

> Add [Job Name], select [Job Type], select [Target Platform Connection] then Click [OK]
Once workflow is created a message box may appear asking if you want to edit/open workflow. Click [Yes] to continue
working on created workflow.

Figure: Create Workflow Dialog

s Job X
Job Name NET! EZZA_WORKFLOM
User Name Job Type | METEZZA v
Create Time 4/20/2020 12:58:23 PN
Information
Description

Variables

SVAR_ NULL [] Change

SVAR_S NULL [[] Change

Target Platform Cannecticn

METEZZA ~

Job Variables
Default variables are created when creating a new workflow. Variables with name SVAR_ can be modified during
runtime using “Set Variable” step.

Editing Workflow

» On main workspace window, Double Click on workflow name to open editor or

..

> Select workflow and then Click ===/ to open editor.

Workflow Designer / Editor

Introduction

Workflow designer or job editor contains tools required to designed ELT workflow.
1. Left panel contains list of Steps (also called nodes) which can be dragged and dropped into canvas area.
2. Right-Center panel is the canvas area that represents workflow item(s).
3. Bottom-Right panel contains workflow related messages.

Figure: Workflow Designer

=4 RPT_EMPLOYEE_COUNT_BY_CITY_SPARK [SPARKSOL], RunState [COMPLETE] — m]
File Run Debug E’ @ @ [1log rcomPETE
Designer | Latest Run Message(s) | Latest Console Output | Run History | Runtime Metrics Report

@ Dataframe
[rs} Localsile
% Onstagegroup HR_EMF!
L& Sparkdatacache
Z Aggregate

° PERSCN_PERSON
s Dedupe » >
? Filter / JOIN SERRROATACACHE \GGREGAT] employee_count_by city

‘f;(Function
PERSON_BUSINESSENTITYADDRE

=
(=)
v
m

()

A

\

@

D= Join
% Minus @
% Union PERSCN_ADDRESS

613 Controltest
() Sync
ES Switch

1/20/2020 & (JOB) Initializing Varisble: $J0B_LOW WATERMARK VALUE
4 {JOB) Initializing Variable: $STRLEN
{JOB) Initializing Variable: $CHARLEN

{JOB) Initializing Variable: $PRECISION

% Filewatch

ﬁ Jdbcwatch
Setvariable

R Watermark

Smartscript

{JOB) Initializing Veariable: $SCALE
ONT_] {JOB) Initializing Variable:

COUNT_BY CITY SPARK (JOB) Initializing Variable:
COUNT_BY_CITY_SPRRK (JOB) Initializing Varisble:

COUNT_BY SPRRK (JOB) Initializing Variable:

o/2020 C
0/2020
0/2020
0/2020

fe
Q
-]
=
(]

4/20/2020 _COUNT_B SFRRE (JOB) Initializing Varisble:
4/20/2020 COUNT_B’ SPRRK (JOB) Variables Initial H

0/2020 B
4/20/2020
4/20/2020

COUNT_BY_CITY_ SPRRK (JOB) Initializing Jdbc C

COUNT_BY_CITY_SPRRK (JOB) Initializing Jdbc Conne

COUNT_BY_CITY_ SPRRK (JOB) Jdbc Connections Initialized: 2

Workflow Tab Items
Designer contains main workflow canvas where development work happens.
1. [Last Run Message] displays latest runtime log for selected step (when Log is checked)
2. [Last Console Output] displays last console log
3. [Run History] displays it’s historical execution states
4. [Runtime Metrics Report] displays count metrics and other measurements based on recent execution

Quick Launch Buttons (from left to right)

By O

Save Workflow

Check for Workflow Mapping Errors
Run Workflow

Stop/Terminate Workflow

PwnNPE

Logging (recent execution state)
Log (Stopped) COMPLETE

Log View mode times out after 1 minute automatically. You must uncheck then check mark Log to refresh.

Workflow Operations

Adding/Deleting/Editing Steps & Flow Control

Adding a step
» [Right] click on canvas and [select] step to add on cursor position.
> ordrag-drop a step from left panel

PASTE |
INSERT STEP b DATA SOURCE »
TRANSFORM »
| | SCRIPTING » @B | SOLSCRIPT
CONTROL v] | ssH
TRANSFER b
EXPORT b
DATA QUALITY b
JOB »

Deleting a step
> [Left] single click to select a step, then click [Delete], then confirm [Yes]/[No]

Confirm Delete

EMPLOYEEDEPAR j l*-, Are you sure you want to delete selected 1 step(s)?

no |

HR_EMPLOYEE

Adding Flow Line / Mapper (Connecting Steps)
> While holding mouse button move cursor on target step and release.

& B

SYNC SSH

(=] @]
O
SYNC 55H

Group Actions
» Select multiple steps by creating a rectangle on canvas, then perform action.
Delete

‘ Horizontal Align ‘

Vertical Align

% :

LOYEEDEFARTMENTHISTORY

S

HR_EMPLOYEE

TARGET TAELE

> To paste copied or cut objects, [Right] click on canvas and click [Paste]

Line Color & Metadata
1. RED No metadata found when connecting data steps
2. BLUE At least one column mapped from source step to target step has different name
3. Solid BLACK All columns are mapped with same name on source and target steps
4. Dotted BLACK Metadata is not required. This is an execution flow.
By default, the arrow direction indicates control flow. In addition, the solid arrows indicate data flow.

Figure: Line Colors

| Direct Mapping |

@N

HE_ EMPLOYEEDEFARTMENTEISTORY

/ JOIN TARGET TABLE

HP,_EMELOYEE

I Indirect Mapplngl changed Table SINEC JOB: AWS_HADDOF _TEST

10

Editing Mapping / Flow

» [Click] on the line arrow head to open mapping editor.

11

—> Mapping (59) X
Input Mapping OQutput
INPUT COLUMNS OUTPUT COLUMNS :
| BUSINESSENTITVID n = 1| BUSINESSENTITYID |
| NATIONALIDNUMBER n = 1| NATIONALIDNUMBER |
|LOGINID n JOBTITLE |
| ORGANIZATIONLEVEL n / |BIRTHDATE |
LJOBTITLE n / MARITALSTATUS |
|BIRTHDATE n | GENDER |
|MARITALSTATUS n HIREDATE |
GENDER n	SALARIEDFLAG
HIREDATE n	VACATIONHOURS
SALARIEDFLAG n	SICKLEAVEHOURS
VACATIONHOURS n	CURRENTFLAG
SICKLEAVEHOURS n /	ROWGUID
[rupeenTe ag n KAMDUEIENMATE | v
CANCEL OK / SAVE

Menu Items Description

1. [Input -> Refresh] refreshes incoming column names and data types

2. [Input -> Push to Output] refreshes output column names

3. [Mapping -> Clear] removes column mapping linkers

4. [Mapping -> Guess Mapping -> Option] draws linkers based on selection

[Output -> Refresh] refreshes output columns list based on target step's metadata

Running Workflow & Analyzing Log

> Click [Play Button] to run current workflow.
Additionally you will receive a dialog for run configuration. When workflow is running Log Mode is checked by default.
You may click on status icon to view detailed message about specific step.

Figure: Running Workflow

0 o
Eg Switch

% Filewatch
ﬁ Jdbowatch

Setvariable

r—

<>l Conarterring

¥ RPT_EMPLOYEE_COUNT_BY_CITY_SPARK [SPARKSOL], RunState [Running] - o
File Run Debug FE® Log (Stopping auto-refresh in 55 seconds) RUNNING
Designer LﬂteisunMEssagE(s) La(estCunsu\EOulput RunH\stury Runtime Metrics Report
S oustome
Eﬂ Local_file
g) Onstagegroup HR_EMPLOYEE
L& Sparkdatacache
E Aggregate I,
2500 \
& Dedupe >—’—b— [F——p— —
? Filter / JOIN SPARKDATACACHE LGEREGATE employee_count_by_city
f;‘ Function
PERSON_BUSINESSENTITYADDRE
D= Join
S s
% Unien SERSON_ADDRESS
$ Controltest
o
E Switch . = e =
INFO: _COUNT BY CITY SPARK (JOB) Initializing Variable: $STRLEN
INEFO COUNT_BY CITY SPARK (JOB) Initializing Variable: SCHARLEN
Filewatch INFC E_COUNT_BY_CITY_SFERK (JOB) Initislizing Varisble: $PRECISION
INFO _COUNT_BY_CITY_SEARK (JOB) Initializing Variable: $SCALE
5 Jdbewatch INFO COUNT BY CITY SERRX (JO5) Initializing Varizble: $VAR 4
INEC (JOB] Initializing Variable: §VAR 5
INFO (JOB} T SRR €
Setvariable INFO COUNT | BY CITY sp,:\x (J0B) T SVER 7
INFO (J03) Inivializing Varisble: $VAR &
Watermark INFO _SPRRK (J0B) Varlab].es Initialized: 13
atermart INFO: COUNT BY CITY SPERK (JOB) i ion: NETEZZA
INFO: RPT_EMPLOYEE_COUNT_BY CITY SPARK (JOB) nection: POSTGRES
P Grmarerring INFQ: RPT EMPLOYEE COUNT BY CITY SPARK (JOB) Connections Initialized: 2
INFC: RPT_EMPLOYEE COUNT BY CITY SPARK (JOS) Run reguested
a4 RPT_EMPLOYEE_COUNT_BY_CITY_SPARK [SPARKSQL], RunState [Running] - u] X
File Run Debug FEE® Log (Stopping auto-refresh in 50 seconds) RUNNING
Designer L,atest Run Massage(s) Laleleunsn\EDutpul Run History | Runtime Metrics Report
S vesstme €0 Name:JOIN, Type: JoIN
Log Message | Cached Data
@ Local_file
2020-04-20 14:04:47 INITIALIZED
% Onstagegroup
2020-04-20 14:05:13 RUNNING
I Sparkdatacache
2020-04-20 14:05:13 [Run Join Sql -> DataFrame] SELECT dacaframe 5219 personaddress 57.°CITY' AS 'CITY', dataframe 5219 hremployee 78.°BUSINI
E : Aggregate [Persist Results] -»> Storagelevel (disk, 1 Replicas) With Rowcount Of 290 Rows
. 2020-04-20 14:05:15
3. oedupe Bows: 230
2020-04-20 14:05:15 DataFrame -> View [join_5218_join_87)
 rre
2020-04-20 14:05:15 COMPLETE
f;(Function
= loin
% Minus
% Unicn
& controtest

12

13

Analyzing Historical Logs

Open log viewer from Workspace/Main Window
» Click [Runtime & Logs] -> [Logging] -> [Workflow Logs]

Figure: Log Viewer

&= Workflow Execution Log - [m] X
Search Frm ey Steps | Runtime Metrics | Latest Console Log
~ Mede Execution Status
& APR-20-20 14:04 Ended APR-20-20 14:05
- . -
Available Workions PERSON_ADDRESS (@ Started: APR-20-20 14:04, Ended: APR-20-20 1405 Duration: 032 Minute(:
. @ 4PR-2020 1400 Ended APR-20-20 14:00 PERSON_BUSINESSENTITYADDRESS 4 Started: APR-20-20 14:04, Ended: APR-20-20 14:05, Durati
¥ DELTA_IMPORT_JDBC2HDFS
PERSON_PERSON () Starced: APR-20-20 14:04, Endec APR-20-20 14:05, Duration: 036 Minute(s)
it IMPORT TABLES TO HDFS & apr-20-20 13:00 Ended APR-20-20 13:00
_ HR_EMPLOYEE (9 Started: APR-20-20 14:04, Ended: APR-20-20 1405, Duration: 0.37 Minute(s)
N) IDBC_TO_NETEZZA_LOAD . .
@ apr-20-20 12:00 Ended APR-20-2012:00 >+ JoIN @ Started: APR-20-20 14:05, Endled: APR-20-20 1405, Duration: 0.04 Minute(s)
N) JOB_GRANDPARENT _ _
i o APR-20-20 11:00 nded APR-20-20 11:00 =0 SPARKDATACACHE ° Started: APR-20-20 14:05, Ended: APR-20-20 14:05, Duration: 0.01 Minute(:|
sl REFRESH_IMPORT_JDBC2HDI _ -
> AGGREGATE (£ Startec: APR-20-20 14:05, Endled: APR-20-20 1405, Duration: 0.06 Minute(s)
sof' RPT_EMPLOVEE COUNT BY.{ | &) APR-20-2010:00 Ended APR-20-2010:00 employee_count_by_city (% Started: APR-20-20 14:05, Endec: APR-20-20 1405, Duration: .07 Mi
N RET_NZ_BATCH_STATISTICS
- &) aPR-20-20 09:00 Ended APR-20-20 0:00 .
sl RUN_SPARK_TRANSFORMAT
N) TEST_RK_IMPORT_NTZ o APR-20-20 08:00 Ended APR-20-20 0800 Node Detail (DATAFRAME) PERSON_ADDRESS, Status: COMPLETE
& apRr-20-20 07:00 Ended APR-20-20 07:00 2020-04-20 14:04:47 INITIRLIZED
2020-04-20 14:04:51 RUNNING
&) apr-20-20 06:00 Ended APR-20-20 06:00
2020-04-20 14:04:51 Write Mode: skip
0 APR-20-20 05:00 Ended APR-20-20 05:00 2020-04-20 14:04:58 OQutput: latest versicn [re-scan target & process last we
o APR-20-20 04:00 Ended APR-20-20 04:00 2020-04-20 14:04:55 DataFrame -> View [dataframe_5219_personaddress_33]
2020-04-20 14:04:59 [Processing Version Numbers -> DataFrame] select ‘RDDRES
& apr-20-20 03:00 Ended APR-20-20 02:00
2020-04-20 14:04:59 DataFrame -> View [dataframe 5215 personaddress 43]
& 2pRr-20-20 02:00 Ended APR-20-20 02:00 y
2020-04-20 14:04:59 [Filtering Version -> DataFrame] select * from “datafrar

Panels
1. Left Panel contains workflow names
2. Middle Panel contains run history by date time
3. Top Right Panel contains nodes executed
4. Bottom Right Panel contains selected node messages

Other Tabs
1. Runtime Metrics contains object metrics counts, like rows, bytes etc for that run date/time
2. Latest Console Log contains last logfile content

Steps / Nodes
SQL Script
Introduction

SQL Script step enables executing SQL queries on a JDBC connection. Statements are separated by semi colon.

Example,

@ SQLScript - |

Execute SQL Script (Insert, Update, Delete, Truncate, Drop)

Connection [NETEZZA49 -

Query (Multiple statements should be separated with ; semicolon, semicelon cannot be part of query data itself)

truncate table templ;

insert into temp select * from adventureworks.admin.data_table:
generate statistics on templ;

EXECUTE DROP_TABLE_IF EXISTS({'templ');|

Cancel | COK |

SQL Statements
Multiple SQL statements are separated by semi-colon. Semi-colon cannot be part of query statement.
For example, using following statement will result in error during runtime.

insert into MY DATA TABLE select COLUMN1, COLUMNZ| |'added;' from
MY SOURCE DATA TABLE

While above statement is still valid, runtime module splits entire content with semi-colon into multiple statements
which leads to one or more invalid SQL.

Calling Stored Procedures
Executing procedures in SQLScript step is also possible which can be achieved by simply inserting call procedure
statement. Stored procedure calls only work on your targeted platform connection.

Example,
EXECUTE DROP TABLE IF EXISTS('templ');

14

15

SSH

Introduction
The SSH step runs a shell command on one of the Spark nodes. You can use the result of the shell command to control
the execution of a subsequent step.

Example,

We set up our job as follows:

In the properties of the SSH command, we enter the following:

Execute Shell Command (SSH) X

Execute SSH Shell Command

Command

ps —aef
~facripts/run—anscther-process.sh

Success/Failure Basis Linux Server Information

() Exit Status Connection Name

Mormal String HADOQP1
() Failure String

Scan Following Text
ELTMaestro runtime engine first attempts to establish direct

COMPLETED connection to specified ssh connection before using any available
agents.

where run-another-process.sh is a shell script that may or may not echo the string ‘COMPLETED’ to standard output.
When the script indeed produces the string ‘COMPLETED’, the step is successful, which then causes the DEDUPE_TEST
job to run; this action can be observed on the job canvas with Debug mode enabled:

If we alter the script so that it no longer echoes ‘COMPLETED’, the SSH step fails, and the DEDUPE_TEST job does not
run.

35H JOB: DEDUFPE_ TEST

Success or Failure Options
Exit Status
If exit status code of shell script equals zero then set this step status to SUCCESSFUL, otherwise FAIL.

Normal String
If output contains mentioned string to be scanned set step status to SUCCESSFUL, otherwise FAIL.
Exit status is ignored if this option is checked.

Failure String
If output of script contains mentioned string to be scanned set step status to FAIL, otherwise SUCCESSFUL.
Exit status is ignored if this option is checked.

16

17

Sync
Introduction
Sync is a dummy step which always returns successful state if executed. The purpose of this step is to control ELT

parallelism for certain MPP systems that contain high throughput and low concurrency. Sync step does not have any
configuration property.

Example, (Without Sync Step)

i SYNC_TEST (HADOOP_SPARK) - [m] X

B . 002 «RERATIETR&. e

S~ e

Sales.Customer tmp/sync_customer Purchasing.ProductVendor tmp/sync_productvendor
(n]
> %
Sales.SalesPerscn tmp/sync_salesperson Purchasing.PurchaseOrderDetail tmp/sync_podetail
(n]
— »
[FAR]
Purchasing.Vendor tmp/sync_vendor
Sales.Store tmp/sync_store
—
77872018 /:20:08 PM ERROR: PARQUETFILE: PARQUETFILE (1) Missing hdfs path
7/8/2018 7: PM ERROR: PARQUETFILE: PARQUETFILE (12) Property missing or not available. Is this step initialized?
7/8/2018 7: BM ERROR: SYNC_TEST (JOB) Mapping Check FATLED..
7/8/2018 7:20: PM ERROR: PARQUETFILE: PARQUETFILE (12) Missing hdfs path
7/8/2018 7:20:42 PM ERROR: PARQUETFILE: PARQUETFILE (12) Property missing or not available. Is this step initialized?
7/8/2018 7:20:42 PM ERROR: SYNC _TEST (JOB) Mapping Check FAILED..

Above workflow executes 6 workflow paths in parallel, which means the number of connections on source and target
amounts to 12 (6 on source, 6 on target). This number can easily go very high when adding more tables. To implement
phasing mechanism which is to load few, wait, load more, repeat kind of operation Sync step should be considered when
designing parallel processes.

Example,

GOSALESHR,.EMPLOYEE EXPENSE_PLAN EXPENSE_PLAN

Above workflow executes in following order:
1. Load three tables in parallel.

2. Sync waits for completion.

3. Load three more in parallel.

Note
ELT Maestro engine dynamically manages all connection requests to ensure workflow process is not reserving any idle
connections at any given instant to free up those resources automatically.

Switch

Introduction
Branch success/failure paths based on input step state.

Example,

Sample dependency logic

1. Run JOB_A

2. I1f JOB_A succeeds Run JOB_B and JOB_C (Skip Failure Path)
3. If JOB_A fails Run JOB_D (Skip Success Path)

Workflow should look something like following.

18

o]
-
"
© o \
O?'V R -
""" »- - JOB: JOB_B
{ T b o T D
JOB: JOB A SWITCH . ‘.L“ d\’
Y
b
~
~
\\
\‘* JOB: JOB_C
~ |
%
JOB: JOB_D
Switch step property example.
f E Switch Process Flow [&r
E Switch Process Flow
Run Following On Success Run Following Cn Failure
47. (JOB: JOB_B) 49, (JOB: JOB_D)
48. (JOB: JOB_C)

19

File Watch
Introduction
File Watch step waits until certain file on Unix/Linux system becomes available until timeout.

Example,

B File Watch X

4
% File Watcher

Linux Server Information (SSH)

Connection |HADOOP_HOST_SSH

Directory /data/incoming/

File Name triggerFile.txt

Control
Max Wait Timeout (Minutes) | 120 v [] Enforce SUCCESS after Timeout
File Check Interval (Minutes) (1 vi [] DELETE File On Normal Success

Linux Server Information
Linux server ssh credentials. Directory to be scanned and filename to watch for.

Max Wait Timeout
Wait for certain minutes until timeout has occurred.

File Check Interval
Interval to Check availability of file.

Enforce SUCCESS after Timeout

If option is checked step status will not fail after timeout. Leaving unchecked sets step status to Failed if file is
not found and timeout has occurred.

Delete File On Normal Success
If checked, file gets deleted after setting status to success.

20

JDBC Watch

Introduction
JDBC Watch step waits until query returns certain value on a specified connection.

Example,
&) Watch JDBC Data State e

hq Watch Data State Message (Polling) Connection | ADVENTUREWORKS2012 v
Watch Parameters

Match Values (Match on one of the following values)

43655

SQL Query (First column results are matched, Matching Limit = 100K Rows)

SELECT SalesOrderID from Sales.SalesOrderDetail where SalesOrderDetailID < 10

Control

Max Wait Timeout (Minutes) | 120 o Check Interval (Minutes) | 1 - |:| Enforce SUCCESS after Timeou!

Match Values
Output to be matched against. True if one of the values match.

SQL Query
SQL query to collect output. State is success if any result tuple matches any specified match value (First row-
column value).

Max Wait Timeout
Wait for certain minutes until timeout has occurred.

Check Interval
Interval to repeat query.

Enforce SUCCESS after Timeout
If option is checked, step status will not fail after timeout. Leaving unchecked sets step status to failed if match is
not found.

21

Set Variable

Introduction

The Set Variable step adds the ability to communicate between a Unix shell or an SQL database and an ELT Maestro
program.

Each job is associated with a number of user variables, named SVAR_0, SVAR_1, SVAR_2, ... (in addition to a number of
system variables such as $JOB_NAME, SJOB_ID, etc.). The user variables are set in the Set Variable stage and accessed
by various other stages. Variables facilitate communication between different parts of ELT Maestro programs. Because
the Set Variable stage allows variables to have their values set by interaction with Unix shells and databases with which
ELT Maestro can establish a connection, the Set Variable stage also facilitates communication between ELT Maestro
processing Unix shells or databases of interest.

Example,

In this example, we use the Set Variable step to track the number of processes on one of the machines in the Spark
cluster while the job is running and write that number to a column in an output table. Here we use a simple Join job, like
the one used to demonstrate the Join command above. Next, we connect the Set Variable step to one of the OnStage
input steps at the beginning of the program, as shown below:

] ||
) | | J
Sl > %\ =
— —_— | —
SETE\L—;.R_I';1 Person.Person » fx LPAR]
JOIN FUNCTION tmp/variable teat
O

Person.EmailAddress

22

Now open the Set Variable step:

Set Variable %

Variable Name $VAR_0 0 (x)] Set Variable
Variable VALUE

O Fixed O SQL @ SHELL

Fixed Value SHELL Script Qutput (First Word)

Static From Cther Variables Clea Connection HADOOP1
SQL Qutput (First Tuple) Shell Script
ps —asf | wo -1

T

In the Variable Name dropdown list, we have selected SVAR_0 —in other words, SVAR_O0 is the particular variable we are
setting.

From among the Fixed, SQL, and SHELL radio buttons, we have selected SHELL, indicating that the value that winds up in
SVAR_0 will come from a shell script.

HADOOP1 happens to be the name of the Unix machine we connect to. (That would likely be different in your case.)
The shell script contains a short program to count the lines produced by the command ps -aef.

Note that we have also introduced a Function step between the Join step and the output file. The Function step allows
us to retrieve the value of the variable and add it to the dataflow. Let’s take a look inside the Function step:

ﬁ Function - [m] X

Input Qutput

Input Column(s) Output Column(s) / Expression(s) ‘ Add Expr H Edit H Delete H Clear |
‘ BusinessEntitylD ‘ nprocs IntegerType N
‘ PersonType ‘

BusinessEntitylD BusinessEntitylD IntegerType v
‘Namesry\e ‘

PersonTy, P T v
‘Tll\e ‘ rsonTyy ersonType StringType
‘Fu‘stName ‘ NameStyle NameStyle IntegerType v
MiddleName
‘ ‘ Title Title StringType e
‘LastName ‘

FirstName FirstName StringType M
[suffix |
‘EmauPromouon ‘ MiddleName MiddleName StringType v
‘Azlmt-ona\(ﬁomacllnfo ‘ LastNar LastName StringType v
[Demographics |

Suffi Suffix StringType M
‘Ema\lAdclress ‘

EmailPromotion EmailPromotion IntegerType v

Cancel OK

Here we see that we have added a new output column, named nprocs, of type integer, and set it to SVAR_O.

After running the program, the results appear as follows:

¥ Console - | X
Data Source |/tmp/variable_test Show Font Size &
[P —— e ——— e e —————— [P e —————— e e
|nprocs|BusinessEntityID|PersonType |[NameStyle |Title | FirstName |[MiddleName| LastName
o Fom e o ————— o ————— e o ————— o ————— o
| 130 1] EM| 0] null] Fen | T Sanchez
| 130 2| EM | 0] null| Terri | Lee | Duffy
| 130] 3| EM| 0] null| Rokertol| null | Tamburellc
| 130 4| EM]| 0] null] Rob | null| Walters
| 130] 5] EM | 0] Ms.| Gail| &| Erickson
| 130 & | EM| 0] Mr.| Joszsef| H| Goldberg
| 130] 7l EM| 0] null] Dylan| 2| Miller
| 130 gl EM| 0] null] Diane| L| Margheim
I 130] 9 EM]| 0] null] Gigil| N| Matthew
| 130 10| EM]| 0] null] Michasl| null| Raheem
| 130 11| EM| 0] null] Owidiu] v Cracium
| 130 12| EM| 0] null]| Thierry| B D'Hers
| 130 13| EM| 0] Ms.| Janice | M| Galvin
| 130 14| EM| 0] null|] Michael] I] Sulliwvan
| 130 15] EM | 0] null| Sharon | B| Salavaria
| 130] 1lg| EM| 0] null| Dawvid]| M| Bradley
| 130 17| EM| 0] null] Fevin| F| Brown
| 130] 18] EM | 0] null] John | L| Wood
| 130 15| EM| 0] null]| Mary| | Dempsey
| 130 20| EM]| 0] null] Wanida| M| Benshoof
o Fo—m e ——— o o - o Fo———— o

That is, there were evidently 130 processes running on HADOOP1 as the Join job shown above ran.

Variable Name

Name of variable defined while creating job.

Variable Values
Fixed:
SQL Output

Shell Script:

Note

Can be static value or copy from another variable.
Output of SQL query on specified connection is used to load variable value. First tuple (first row-

column) is used from query result.
Output of shell script is used to load variable value. First word displayed on standard output is

selected.

All variable values are re-evaluated during runtime.

23

24

Watermark

Introduction
Sets workflow JOB or root job (batch) watermark from another variable. Watermark values can only be set by copying
from pre-initialized variables (current job variables).

Example,

E‘ Set Watermark X

Watermark Type

E. Update Watermark @ Batch O Job

Reset

Watermark Value

High Value $VAR_D -
Cancel OK
Watermark Types
Batch: Root job watermark.
Job: Current job watermark.
Watermark Values
High Value: High watermark value for checked watermark type.
Low Value: Low watermark value for checked watermark type.

Note

When a workflow runs following watermark values are initialized automatically by the engine. The watermark values are
captured from last successful run state.

SBATCH_LOW_WATERMARK_VALUE

SBATCH_HIGH_WATERMARK_VALUE

SJOB_HIGH_WATERMARK_VALUE

SJOB_LOW_WATERMARK_VALUE

Browse to Variables and Watermark section for more information.

25

SFTP

Introduction
SFTP step enables downloading files from remote UNIX/Linux servers. ELT Maestro connects using SSH protocol to
retrieve files using secure channel. SFTP step can also utilize watermarks to enable downloading changed files.

Example,

(& stp)
Source Information (SFTP ower S5H)
HostMame 192.168.1.49 C
UserName nz +
Password .. El

Directory Sinz/kit7.1.0.3/log/postgres

File/Pattern pg.log.” Browse |

Target Information (Maestro Server)

Directory Stmp/postgres Browse |

Cther Options

n Auto-Archive

Use Watermark (5JOB_LOW WATERMARK_VALUE) Er

Cancel |

Source Information

SSH Login: SSH credentials for SFTP server.
Directory: Source Directory
File/Pattern: File Name or Pattern. POSIX expression is used to evaluate file names.

Target Information
Directory: Directory path on ELT Maestro server.

Use Watermark Option

If this option is checked ensure that current workflow does not set Job Low Watermark Value. Watermark option utilizes
job low watermark value to obtain only the changed files since last load. SFTP step automatically keeps track of latest file
modified timestamp based on source server time zone and updates job low watermark value automatically.

Auto Clean Option

If this option is checked upon completion of root job (BATCH) the downloaded files are automatically deleted. Auto-
Clean option is useful specially when freeing up disk resources on ELT Maestro server after loading them into database
tables.

SFTP2S3 -Deprecated

Introduction

26

SFTP2S3 step enables downloading files from remote UNIX/Linux servers into one of the active agent systems and then
uploading those files to S3 bucket. ELT Maestro connects using SSH protocol to retrieve files using secure channel. SFTP
step can also utilize watermarks to enable downloading changed files. File(s) can be encrypted and/or compressed
before uploading into S3 bucket. Client side AES256 bit encryption is default encryption algorithm.

Example,

& Sftp To AWS S3

=3

Connection
Directory

File/Pattern

53 Connection

53 Key Prefix

Other Options

Cancel |

Source Information (SFTP over S5H)

HOST_44
/data/outgoing

orders®.psv

Target Information (53 Storage)
CREGON_S3_CONNECTION_Z Browse | File Part Size (MB)

eltmaestro/data/incoming/

Use Watermark ($JOB_LOW WATERMARK_VALUE) Compress Level= v| Encrypt File Auto-Clean

Browse |
Browse | Threads = |2 'l

Parameters

Property Type Info

Connection Text SSH Connection Name

Directory Text Source Directory

File / Pattern Text Filename or POSIX Pattern

Threads Selection Number of threads for parallel uploads. (Applies to pattern matched
files)

File Part Size (MB) | Selection S3 upload file partition size for larger files.

S3 Connection Text S3 Connection Name

S3 Key Prefix Text Key Prefix to append

Use Watermark Check Box Optional: Uses low watermark variable.

Compress Selection Optional: Uses bzip2 compression, 9 is highest compression level

Encrypt File Check Box Encrypts file before uploading using specified key configured on S3
Connection.
Uses AES256 bit client side symmetric key.

Auto-Clean Check Box Deletes uploaded files from S3 upon job completion.

27

Control Test

Introduction

Enables running data quality tests to measure the correctness or reasonableness of data as it is moved and transformed
within or across workflows. A Control Test must be defined before it can be inserted into a workflow. The definition is
performed using the Control Test Designer, which is accessed from the Administration Menu on the main ribbon.

To open control test editor, on the main window Click [Administration], Click [Metrics Configuration] then Click [Control
Test]

rqﬂ ManageCo_ntmITests I —— — — IEI&IQ]
Search Test Name Sample Control Test 1 .
Description A Sample Test Using Row Count Equality H

Control Tests Tolerance 0.00 Type TestID 10

B Sample Control Test 5 “ | | Expected value | Actual Value |

& SR sl Expected Value Query Connection [Test

€ Sample Control Test 2 Select 1000

L Sample Control Test 4

P Contact Reason Dimension .

P Customer Contact Data Mart

P Customer Contact Fact

P Customer Dimension L

P Product Dimension

P Sales Data Mart

P Sales Fact .
< n » Cancel

After giving a name, an identifier, and defining the test type, tolerance, and the expected value query. We then define
the connection and the actual value query as shown below. All normal control tests will require both an expected value
query and an actual value query which are then compared to determine if the control test passed or failed. Control Test
Type ‘M’ which indicates we are performing a measurement rather than a control test, is used to probe and report on
gueryable system parameters we may wish to know about and run trending analysis on. Example include measuring
database size growth over time, capturing end-user counts, or tracing the number of reports run.

- -
B Manage Control Tests mm—e: Sm—" S E@gl

Search Test Mame Sample Control Test 1 .
Description A Sample Test Using Row Count Equality -
Control Tests Tolerance 0.00 Type TestID 10
Sample Control Test 5 !

Sample Control Test 1

Actual Value Query Connection : '] [Test

Sample Control Test 2 Select 1000

Sample Control Test 4

Contact Reascon Dimension

Customer Contact Fact

Customer Dimension

Product Dimension

Sales Data Mart

Sales Fact

B
C
C
L
P
P Customer Contact Data Mart
P
P
P
P
P
1

n 3 Cancel

We can now save the Control Test and then call it within a workflow. The illustration below shows how it is selected
from within the workflow designer.

Job

Introduction

Allows current workflow to execute deployed workflow. Job can be used with Switch to design success and recovery
workflow path as well.

Example Workflow Implementation,

JOBE: JOB_ A SWITCH ™, ~ A m

JOBE: JOBE_D

Example,

i ';';'g Job Mﬂ

CALL_PROC -
TEST1

JOB_D

JOB_B

RS BLUEMIX LOAD

MNZ_SCHEDULE_TEST

VAR_TEMP_TABLE

W5_89_SLEEPER

JOB_C

LOAD_2 53

JOB_A

Jwi -

[P

Cancel oK

Job
Job Step executes selected deployed job.

Note: ELT Maestro engine can only execute one instance of a job in a workflow to avoid execution recursion.

28

29

Local File

Introduction

Local File step allows loading delimited (csv), parquet, json, orc and text files from sources including aws s3
storage and local filesystem. To build loading pipeline, local file, redshift stage and table step is required as shown
below.

Figure: Local File, Redshift Stage, Table pipeline

5 —3—8

-survey-2021-financial-year-provisiona. REDSHIFTSTAGE annual_survey

Figure: Local File Step

Data Source | CSV File Options | JSON Options | Output Mode
Connection File Format Compression
CORELLI_S3_CONMECTION o Csv o nong o

Data Cbject Path

Browse
Preview

gz1olk

annual -enterprise-survey-2021-financial-year-provigional -csv.cav

Columns List

Year nteger
Industry_aggregation_NZSICC String

Industry_code NZSIOC Strin

[Y=]

Industry_name_NZSI0OC Strin

['=]

Units Strin

[I=]

Variable_code Strin

[1=]

Variable_name Strin

[Y=]

Variable_category Strin

[1=]

Walue Strin

[1=]

Requirements
> A file data source connection must exist that points to aws s3 or local filesystem.

Loader Configuration Steps
> Select source connection, file format, compression.
> Browse data object path or manually modify file path.
> Modify CSV File Options or JSON Options.

30

» On Output Mode, check mark ON Re-Profile Metadata (this option profiles data files, check mark OFF re-profile
flag upon successful metadata detection)

For information on file load options, please spark site and scroll to parameter definitions listed.
https://spark.apache.org/docs/latest/sqgl-data-sources-csv.html
https://spark.apache.org/docs/latest/sqgl-data-sources-json.html

General CSV Options

Option Description

sep Delimiter

header True = first line contains header as column names
inferSchema True = guess data types, False = read data as string
quote Character used to quote data on files
ignoreLeading/TrailingWhitespace Trim whitespace on left/right (trim)

Example,

Open local file step and configure file options on [CSV File Options] tab. Options depend on selected file format. Text,
parquet, orc formats do not need any configuration except compression.

Data Source | CSV File Options | JSON Options | Output Made

sep ignoreLeadingWhiteSpace maxColumns
Dec: 44 Comma - true v 8192

header ignoreTrailingWhiteSpace maxCharsPerColumn

true b4 <default> v -1
inferSchema dateFormat mode

true i yyyy-MH-dd <default> v
enforceSchema timestampFormat multiline

<default> yyyy-MM-dd ' T"HH:mm: 33 . S55KKX <default> v
quote

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/DataFrameReader.html#csv-org.apache.spark.sql.Dataset-

https://spark.apache.org/docs/latest/sql-data-sources-csv.html
https://spark.apache.org/docs/latest/sql-data-sources-json.html

On [CSV File Options] tab check mark ON Re-Profile Metadata. This enforces data profiler mode only during runtime.

Spa
Data Source | CSV File Options | JSON Options | Qutput Made
Data Output Mode
(® ALL ROWS (all records, re-scan path..)
) DELTA ROWS {only inserted records during runtime, FASTER)

) LAST VERSION (window function is used to calculate latest version records.SLOW)

Metadata Structure

Re-Profile Metadata
Enforce UTF-8

- O

31

On [Data Source] tab select Connection, File Format, Compression and Data Object Path (Browse if necessary), then click

Refresh.
Spa
Data Source | CSV File Options | JSON Options | Output Mode
Connection File Format
CORELLI_S3_CONNECTION) Csv

Data Object Path

annual-enterprige-survey-2021-financial-year-provisional-csv.csv

Columns List

Year nte
Industry_aggregation_NZSI0C String
Industry_code NZSIOC String
Industry_name_NZSIOC String
Units String
Variable_code String
Variable_name Strin,

Variable_category String

Cancel

Then Click [OK] to save and execute workflow. After workflow runs, the local file step will have skipped status when

successful.

(s

prise-survey-2021-financial-year-provi

Compression

none S

Preview

Sz

Uncheck log and re-open local file step, then click refresh button so that additional maintenance columns (_file_date,
_file_md5, _file_name) appear at the bottom of the list.

Data Source | CSV File Options | JSON Options | Qutput Made
Connection File Format Compression
CORELLI_S3_CONNECTION w Csv e none ©
Data Object Path
annual-enterprise-survey-2021-financial-year-provisional-csv.csv

[E])

Columns List

units String

variable_code
variable_name String
variable_category String
valug String

industry_code_anzsic06

_file_date Timestamp
_file_md3 String
_file_name String
o

On [Output Mode] tab, check mark OFF [Re-Profile Metadata] so that the step does not skip. Click [OK] to save and
continue adding RedshiftStage on the pipeline.

Redshift Stage [Redshift]

Introduction

This step pushes data files into S3 temporarily in parquet file format generated by Local File step, creates a
temporary table on Redshift, loads staged files into Redshift, and deletes the temporary files from S3. Use this
step with Local File step as a source and Table step as target.

Figure: Local File, Redshift Stage, Table pipeline

) — g —B

—survey-2021-finencial-year-provigiona. BEDSHIFTSTAGE

annual survey

32

Figure: Redshift Stage Step

]
53 Connection 53 Path Authentication Mode
CORELLI_S3_CONMNECTION - $ELTMAESTRO_PIPE_NAME/stage/$GUID ®) 1AM O KeY
Columns List
Sl
year integer ¥
industry_aggregation_nzsioc text -
industry_code_nzsioc text N
industry_name_nzsioc text v
units text ¥
variable_cade text v
variable_name text v
wvariable_category text -
value text v
industry_code_anzsic06 text v
_file_date timestamp v
_file_md5 text v
_file_name text ¥

Requirements
» Source is Local File step; Target is Table step.
» S3 Connection is AWS S3 connection for ELTMaestro data staging use.

Loader Configuration Steps
» Select S3 Connection. S3 Path can be left unchanged.

> Select [IAM] if S3 bucket has redshift IAM policy, else select [KEY] on authentication mode.

> Click [Refresh] button to reload columns if the list is empty, then click Save.s
> Link output of this step to Table step.

Refer to Table Step on Page 37.

33

34

File Loader [Snowflake]

Introduction

File loader step allows loading flat files into existing table. The table structure must match data file structure.
Output of file loader step should point to physical table. File Loader step can load files from Onstage source, SFTP
source or files located on ELT Maestro server.

Figure: File Loader Step

[File Loader - O s
Source | File(s) on Integrator Server
File Provider
Cnstage Step & SFTP Step File(s) on Integrator Server
File Stage File Format
"ATNI_PROD"."ELTMAESTRO"."ELTM_AZURE_STAGE" "ATNI_PROD"."ELTMAESTRO"."CSV_1
Columns
| Add File Metadata Columns | | Load Known Table Structure |
Colurnns List

©

ISN BIGINT [key
TEXT_LENGTH BIGINT [key
TARGET_ID VARCHAR(6E [key
CRIGINAL_TARGET VARCHAR(6E [key
SOURCE_ID VARCHAR(68 [key
SOURCE_MSC_ADDRESS VARCHAR(68 [key
SEND_MODE BIGINT [key

Requirements
» Atable must exist on database that matches metadata with file so a known structure can be referenced
> File path must be specified if loading from files located on ELT Maestro server
> Optionally based on file construct you must alter [Load Query Options], refer to Netezza external table options
for customizing load options
> An External File Stage must be configured
> File Format must be configured

Loader Configuration Steps
» Create a table on Snowflake database that matches with file structure
> Reference whether file is provided by sftp, onstage or locally present
> Attach output to table step as shown on figure below.

38

FILELOADER THME

Figure: File Loader to Table

35

Onstage Group [Snowflake]

Introduction

Onstage Group also known as schema loader is used to load multiple databases tables from a source jdbc connection.
This step is a database migration utility that can generate objects on target system like Snowflake and loads data from
source systems. Incremental loads can be achieved by utilizing watermark columns.

Figure: Onstage Group Loader [Schema Tab]

B Onstage Schema Loader for Snowflake - O X

Schema | Table(s)
Source

Connection | NETEZZA =

Catalog GTT_STAGE
Target
Catalog ATNI_PROD

Schems | GTT_REPORTING

Configurations
Initial Refresh Partiticns

128 v

Yearly Data Growth Factor (Optional)
1.05

File Format

"ATNI_PROD""ELTMAESTRO"."INTEGRATOR_ONSTAGE_FCORMAT" Browse

File Stage

"ATMI_PROD"."ELTMAESTRO""ELTM_AZURE_STAGE"

Cancel

Configuration

Browse to [Select] source connection, catalog and schema to migrate tables from

Browse to [Select] target catalog and schema to migrate tables to

Select [Initial Load Partitions] to bucket initial load sql script into multiple conditions

Select [Initial Load Threads] to specify parallelism factor on partitions

Select [File Format] and [File Stage]

Optionally if you set [Run Count Metrics] to true, ELT Maestro automatically runs source/target row counts
before and after load has been completed.

VVVYVYVYY

Example,

If you set initial load partitions to 16 and load threads to 4 then ELT Maestro will generate 16 range based SQL queries to
execute on source system and executes those 16 queries 4 at a time, the load is also performed at parallelism of 4.
Setting initial load partitions is best if you are loading a very large tables.

Note: A numeric or timestamp based watermark column is always required to partition the data

Figure: Table(s)

36

% Onstage Schema Loader for Netezza

Schema | Table(s)

Ayailable Source Table(s)

batch_cycle
batch_cycle_run
batch_cycle_run_job
batch_cycle_type
connecticn
connecticn2
connecticn_meta_onstage
connection_type
control_test
control_test_h
control_test_hierarchy
control_test_peoint
control_test_run
control_test_type
cron_schedule_current
cron_schedule_meta
hd_functions
hd_table_meta

job
job_batch_cycle_run_msg
license
object_alert_rule
object_trigger
sqlm_config

sqlm_reserved

Cancel

Target

Target Tables (catalog/schema//table)

batchcycle_run | Static Filter Condition
Target ELTMAESTRO/ADMIN/batch_cycle_run1
Watermark(s) |batch_run_num

Key(s) batch_run_num

batchgycle | Static Filter Condition
Target ELTMAESTRO/ADMIN/batch_cyclel
Watermark(s) |batch_cycle_id

Key(s) batch_cycle_id

tstep_status | Static Filter Condition

Condition

Refresh Metadata| | Delete | |

Clear

CREARTE TS > CURRENT TIMESTAMF - 5

Save

Adding Tables

» Select tables on left panel and Click [>] button to add to list on right panel
» Click [Refresh Metadata] button to load metadata information after all required tables have been added

Delta Configuration (Option 1 if you know delta columns)

» For each table, select [watermark] column, you can select multiple watermark columns for delta load

> Specify [key] columns so that updates can be upserted. If keys are not specified the loader will only perform

inserts

Reach-Back or Manual SQL Configuration (Option 2 if you don’t know delta columns)

> Modify [Static Filter Condition] and add a filter expression. As shown on above diagram for third table a static
filter is added that goes back 4 days to obtain records.

Note: Object path is referenced with path format of catalog/schema/table. If you are going to change table names on

target please use this format.

Table [Most Platforms]

Introduction
Table step can read from or write to referenced table.

Figure: Table Step

37

Run Yacuum Upsert

Columns List

BATCH_RUM_NUM MUME o | Cluster Key Ident

BATCH_CYCLE_ID MUME Cluster Key Ident

BATCH_RUMN_START_TS TIMESTAMP_NTZ(9) Cluster [] Key Ident
BATCH_RUM_END_TS TIMESTAMP_NTZ(9) Cluster [] Key Ident
BATCH_STATUS_CD WVARCHAR(16) Cluster [] Key Ident

BATCH_CYCLE_DATA_VALIDITY_TS Cluster [] Key Ident

BATCH_CYCLE_HIGHWATER_MARK Cluster [] Key Ident

Table - O e
Construct Table
()] Existing) Create O Temp Database |ATNI_PROD || Browse |
Load Options Schema |STAGING

[] Truncate Run Statistics Table BATCH_CYCLE_RUN

©

BATCH_CYCLE_LOWWATER_MARK ARCHAR(G0) Cluster I:‘ Key Ident
COMPLETED BEOOLEAN Cluster I:‘ Key Ident
ERROR_COUNT MUMEER(38,0) Cluster I:‘ Key Ident
CRFATF TS TIMFSTARE WNTZIO Cluster [1 Kew ldent
S
Construct

1. [Existing] Reference existing table and metadata from database schema
2. [Create] Create table if it does not exist
3. [Temp] Write output to a temp table, then drop it after workflow execution is completed

Load Options
1. [Truncate] Truncate table before inserting data
2. [Run Statistics] Run GENERATE STATISTICS command on table after data has been inserted or updated
3. [Run Vacuum] Run GROOM command on table after data has been inserted or updated
4. [Upsert] Update + Insert data on table by detecting key column reference

Column Properties
1. [Cluster] Cluster rows based on check marked column
2. [Key] Mark column as a logical key (required for upsert mode)
3. [ldent] Mark column as identity/auto incrementing column

You can only add/remove columns for construct type [Create] or [Temp] or set Ident flag to true.

38

File Loader [Netezza]
Introduction
File loader step allows loading flat files into existing table. The table structure must match data file structure.

Output of file loader step should point to physical table. File Loader step can load files from Onstage source, SFTP
source or files located on ELT Maestro server.

Figure: File Loader Step

B File Loader - O X

Source | Flat File(s) | Load Query Options | CDC Merge Query

File Source Type
Onstage Step SFTP Step ® File(s) on Integrator Server

Meta Data

| Load Known Table Structure |

©

Columns List

batch_run_num BIGINT O Key
job_id BIGINT [Key
step_id NTEGER [Key
step_name CHARACTER VARYING(128) [Key
step_type CHARACTER VARYING(128) [Key
step_status CHARACTER VARYING(64) [Key
start_ts T [Key
end_ts Tl O Key
create_ts TIMESTAMP [Key
update_ts TIMESTAMP O Key
Requirements

» Atable must exist on database that matches metadata with file so a known structure can be referenced

> File path must be specified if loading from files located on ELT Maestro server

> Optionally based on file construct you must alter [Load Query Options], refer to Netezza external table options
for customizing load options

Loader Configuration Steps
» Create a table on Netezza database that matches with file structure
> Reference whether file is provided by sftp, onstage or locally present
» Modify external table load options without changing $ variable references
> Attach output to table step as shown on figure below.

Figure: File Loader to Table

FILELOADER TME

39

Onstage Group [Netezza]

Introduction

Onstage Group also known as schema loader is used to load multiple databases tables from a source jdbc connection.
This step is a database migration utility that can generate objects on target system like Netezza and loads data from
source systems. Incremental loads can be achieved by utilizing watermark columns.

Figure: Onstage Group Loader [Schema Tab]

& Onstage Schema Loader for Netezza - O X

Schema | Table(s)
Source

Connection | POSTGRES =

Catalog sglmaestro
Target
Catalog ELTMAESTRO

Load Configurations
Initial Load Partitions Initial Load Threads Attributes Quoting Run Count Metrics Data Growth Rate (Beta)
4 v 2 v True - True v 1.05

Additional Configuration [not available]

Cancel Save

Configuration

Browse to [Select] source connection, catalog and schema to migrate tables from

Browse to [Select] target catalog and schema to migrate tables to

Select [Initial Load Partitions] to bucket initial load sql script into multiple conditions

Select [Initial Load Threads] to specify parallelism factor on partitions

Optionally if you set [Run Count Metrics] to true, ELT Maestro automatically runs source/target row counts
before and after load has been completed.

VVVYVYVY

Example,

If you set initial load partitions to 16 and load threads to 4 then ELT Maestro will generate 16 range based SQL queries to
execute on source system and executes those 16 queries 4 at a time, the load is also performed at parallelism of 4.
Setting initial load partitions is best if you are loading a very large tables.

Note: A numeric or timestamp based watermark column is always required to partition the data

Figure: Table(s)

40

% Onstage Schema Loader for Netezza

Schema | Table(s)

Ayailable Source Table(s)

batch_cycle
batch_cycle_run
batch_cycle_run_job
batch_cycle_type
connecticn
connecticn2
connecticn_meta_onstage
connection_type
control_test
control_test_h
control_test_hierarchy
control_test_peoint
control_test_run
control_test_type
cron_schedule_current
cron_schedule_meta
hd_functions
hd_table_meta

job
job_batch_cycle_run_msg
license
object_alert_rule
object_trigger
sqlm_config

sqlm_reserved

Cancel

Target

Target Tables (catalog/schema//table)

batchcycle_run | Static Filter Condition
Target ELTMAESTRO/ADMIN/batch_cycle_run1
Watermark(s) |batch_run_num

Key(s) batch_run_num

batchgycle | Static Filter Condition
Target ELTMAESTRO/ADMIN/batch_cyclel
Watermark(s) |batch_cycle_id

Key(s) batch_cycle_id

tstep_status | Static Filter Condition

Condition

Refresh Metadata| | Delete | |

Clear

CREARTE TS > CURRENT TIMESTAMF - 5

Save

Adding Tables

» Select tables on left panel and Click [>] button to add to list on right panel
» Click [Refresh Metadata] button to load metadata information after all required tables have been added

Delta Configuration (Option 1 if you know delta columns)

» For each table, select [watermark] column, you can select multiple watermark columns for delta load

> Specify [key] columns so that updates can be upserted. If keys are not specified the loader will only perform

inserts

Reach-Back or Manual SQL Configuration (Option 2 if you don’t know delta columns)

> Modify [Static Filter Condition] and add a filter expression. As shown on above diagram for third table a static
filter is added that goes back 4 days to obtain records.

Note: Object path is referenced with path format of catalog/schema/table. If you are going to change table names on
target (Netezza) please use this format.

Table [Netezza]

Introduction
Table step can read from or write to referenced table.

Figure: Table Step

41

Table _

Construct Table

Load Options Schema |ADMIN

Run Vacuum Upsert

Columns List

BATCH_CYCLE_ID BIGINT v | [Dist []Sort [] Key
BATCH_CYCLE_NM CHARACTER VARYING(255) | [oist []Sort []Key
BATCH_STATUS_CD CHARACTER VARYING(12) v | [pist []Sort []Key
RUN_CQUNT INTEGER v | [Dist []Sort []Key

Cancel

() Existing ® Create (_) Temp Database |TESTDE
[Truncate Run Statistics Table |RPT_BATCH STATISTICS

imiiEa I[¢)

Construct
4. [Existing] Reference existing table and metadata from database schema
5. [Create] Create table if it does not exist
6. [Temp] Write output to a temp table, then drop it after workflow execution is completed

Load Options
5. [Truncate] Truncate table before inserting data
6. [Run Statistics] Run GENERATE STATISTICS command on table after data has been inserted or updated
7. [Run Vacuum] Run GROOM command on table after data has been inserted or updated
8. [Upsert] Update + Insert data on table by detecting key column reference

Column Properties
4. [Dist] Distribute data based on check marked column (DISTRIBUTE ON)
5. [Sort] Organize/Cluster data based on check marked column (ORGANIZE ON)
6. [Key] Mark column as a logical key (required for upsert mode)

You can only add/remove columns for construct type [Create] or [Temp]

42

Onstage Group [Spark SQL]

Introduction

Onstage Group also known as schema loader is used to load multiple databases tables from a source jdbc connection.
This step is a database migration utility that can generate objects on target system like Hadoop and loads data from
source systems. Incremental loads can be achieved by utilizing watermark columns.

Figure: Onstage Group Loader [Schema Tab]

&) Onstage Schera Loader for Spark - O X

Schema | Table(s)
Source

Connection | POSTGRES =

Catalog sglmaestro
Target
Catalog nang

Load Configurations
Initial Load Partitions Initial Load Threads Attributes Quoting Run Count Metrics Data Growth Rate (Beta)
4 v 2 v True False v 1.05

Additional Configuration [not available]

Cancel Save

Configuration

Browse to [Select] source connection, catalog and schema to migrate tables from

Browse to [Select] target hdfs path and schema to migrate tables to

Select [Initial Load Partitions] to bucket initial load sql script into multiple conditions

Select [Initial Load Threads] to specify parallelism factor on partitions

Optionally if you set [Run Count Metrics] to true, ELT Maestro automatically runs source/target row counts
before and after load has been completed.

VVVYVYVY

Example,

If you set initial load partitions to 16 and load threads to 4 then ELT Maestro will generate 16 range based SQL queries to
execute on source system and executes those 16 queries 4 at a time, the load is also performed at parallelism of 4.
Setting initial load partitions is best if you are loading a very large tables.

Note: A numeric or timestamp based watermark column is always required to partition the data

43

Figure: Table(s)

% Onstage Schema Loader for Spark — O *

Schema | Table(s)

Available Source Table(s) Target

Target Tables (catalog/schemaytable) Refresh Metadata | | Delete | | Clear

batch_cycle - -
tsql_types | Static Filter Condition
batch_cycle_run

batch_cycle_run_job Target Jtmp/t_sql_types

batch_cycle_type Watermarkls) |sql_type_id -
connection ‘ | 5

connection2 eyls) sql_type i

connection_meta_onstage
connection_type batchgycle_run_job | Static Filter Condition

control_test Condition

control_test_h
control_test_hierarchy CREATE TS5 » CURRENT TIMESTAMF — INTERVAL 'S DB'I'S'|

control_test_point

control_test_run
control_test_type
cron_schedule_current
cron_schedule_meta
hd_functions
hd_table_meta

job
job_batch_cycle_run_msg
license
object_alert_rule
object_trigger
sglm_config

sqlm_reserved

Cancel Save

Adding Tables
» Select tables on left panel and Click [>] button to add to list on right panel
» Click [Refresh Metadata] button to load metadata information after all required tables have been added

Delta Configuration (Option 1 if you know delta columns)
> For each table, select [watermark] column, you can select multiple watermark columns for delta load
> Specify [key] columns so that updates can be upserted. If keys are not specified the loader will only perform
inserts

Reach-Back or Manual SQL Configuration (Option 2 if you don’t know delta columns)

» Modify [Static Filter Condition] and add a filter expression. As shown on above diagram for third table a static
filter is added that goes back 4 days to obtain records.

Note: Object path is referenced with HDFS path format without url prefix.

44

Data Frame [Spark SQL]

Introduction

Data Frame step reads file(s) or folder on HDFS and converts into data frame object. Additionally this step also creates a
temporary global view for SQL operation. This step can load file types such as Parquet, Orc, Csv, Json and Text and
convert into structured data frame object. This step is very similar to table step.

Consider following workflow

Figure: Data Frame on a workflow

g

HR_EMPLOYEE

BE SON_?ER_CN\‘\ E : %
| -
ey Ll
/ OIE SDARKDATACACHE AGGREGAT) employes_count_by_city

PERSON_BUSINESSENTITYADDRE.

S

PERSON_ADDRESS

\

Y

@

The 4 data-frame steps on left are reader steps and the last one (employee_count_by_city) is a writer step. You can tell
this by looking at the connecting arrow(s). The tail represents read and head represents write.

Figure: Data Frame
Spark Data Frame/File - O X

Data Source | CSV File Options JSON Options | Qutput Mode

File Format Data Object Path

|
/adventureworks/HR_EMPLOYEE
Compression

snappy =

Write Options Columns List

® Truncate D

) Append

) Upsert-Append HIREDATE Timestamp [pist []5ort []PKFK

File Parts (Coalesce) SALARIEDFLAG nteger [Dist []Sert [] PK/FK

guto N VACATIONHOURS nteger [Dist []Sort []PKFK
SICKLEAVEHOURS nteger [bist [] Sort [] PK/FK
CURRENTFLAG nteger [bist [] Sort [] PK/FK
ROWGUID String [bist [] Sort [] PK/FK
MODIFIEDDATE Timestamp [bist [] Sort [] PK/FK
DATASLICEID nteger [bist [] Sort [] PK/FK
CREATEXID nteger [bist [] Sort [] PK/FK
ELTM_TXID nteger [Dist [] 5ot [PK/FK

Data Frame Criteria
> If supplied path exists, you can read or append/write
> If supplied path does not exist, you can append/write

Configurations

> [File Format] can be Parquet, Orc, Csv, Json or Text and supported compression for these formats. For CSV or

Json type please verify additional format configuration.

» [Compression] depends on supported file format by spark application.

45

» [Write Option] can be truncate which over-writes target path, append which keeps creating new files or upsert-

append which keeps latest version of keys.

> [File Parts] is the number of files to write/create during write operation.

Figure: Data Frame output mode

Spark Data Frame/File

Data Source | CSV File Options | JSON Options | Output Mode

Data Output Mode

() DELTA PASSTHROUGH (if no write operation then scan + filter on last txid else passthrough)

(®) LAST INSERTED VERSION (scan + windew function to get last version .SLOW)

Cancel

Output Mode

> [All Rows] option provides all records available on specified path
> [Delta Passthrough] option provides records inserted by current workflow
> [Last Inserted Version] option provides latest record, for this to work you need to specify kdy columns for last

version calculation.

Not implemented (YET)
» Enforcing distribution and sort columns.

46

Local File [Spark SQL]

Introduction
> Local File step is like data frame step with a condition that it is only a READER for file(s) or folder located on
runtime ELT Maestro master or slave server.
> You cannot write to path referenced
» You can only run spark job on non-cluster mode (because you are referencing local file)

Spark Data Cache / Persistance [Spark SQL]

Introduction
Spark Data Cache allows caching data frame into disk, memory or both with options. This step does exactly what a spark
persist function does and has same output as input.

Figure: Spark Data Cache

== Persist Data Frame >
Storagelevel | MEMORY_ONLY v
Cancel Save

Figure: Spark Data Cache step on workflow

=

HR_EMPLOYEE

% | =
PERSON_PERSON
% JOT. SPARHDATACRCHE LGGREGRTE employee_count_by city

PERSON_BUSINESSENTITYADDRE

S

PERSON_ADDRESS

Available Cache/Persistance Options
DISK_ONLY

DISK_ONLY_2
MEMORY_AND_DISK
MEMORY_AND_DISK_2
MEMORY_AND_DISK_SER
MEMORY_AND_DISK_SER_2
MEMORY_ONLY
MEMORY_ONLY_2
MEMORY_ONLY_SER
MEMORY_ONLY_SER_2

VVVVYVYVVVYYVYY

Ref: https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence

Dedupe

Introduction

The Dedupe step removes duplicate rows from a dataset.

Example,
There are no properties to set.
& DeDupe
De-Duplicate .
Input Columns ‘°
[MEMEER ID

[MEMBER NAME

Cancel

Consider the following job:

O n A
&
tmp/union_test2 DEDUPE t:r\p.r‘;a:;e;\.l;e.;;:e st

Input Output (after dedupe)
- B + o ————— B +
| MEMBEE_ ID | MEMBER NAME | | MEMBEE_ID | MEMBER NAME [
o +—— + o o +
| 1001 aaaa | [1002 bbbb | |
| 1002 bbb | [1021 uuuy |
| 1003 ccoc | [1022 TYVY |
| 1004 dddd | [1004 dddd |
| 1021 uuuu | | 1001 aaaa |
| 1022 bacaad [1003 ccecc|
| 1001 aaaa| +—— +—— +
| 1002 bbbl |

| 1003 cccc|

| 1004 dddd |

| 1021 [ERRLERLY|

| 1022 VUV |

o ———— o —————— +

47

https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence

Minus
Introduction
The Minus step subtracts the contents of one dataset from another.

Example,
Consider the job shown below:

[

MINUS tmp/minus_test

data/member_datal_csv

In this job, the contents of the table MEMBER_NAMES_2 are subtracted from the contents of the table
MEMBER_NAMES. The column metadata for both inputs must be the same. In the properties window, you specify
which dataset is the minuend (i.e. Source(A)) and which dataset is the subtrahend (i.e. Source(B)).

% Minus X
Qutput Columns Arrange Columns Delete Refresh
% Source(A)-Source(B) ° | 1
IMEMBER_ID |
Source(A) | $8. (data/member_data0_csv) v

IMEMBER_NAME |

All Input Columns

$8.MEMBER_ID
$8.MEMBER_NAME
$3.MEMBER_ID
$3.MEMBER_NAME

48

49

Union
Introduction
The Union step combines two datasets. The datasets have to have the same column metadata.

Example,

O O
datafmember_dataf)_csv —
—
A
'm
M UNION tmp/union_test

data/member_datal_csawv

Here, the Union step is used to combine the contents of two flat files, and the result is loaded to a table.

The contents of the first flat file is

o o —————— +
|MEMBER ID|MEMEER NAME |
o S S R
| 1001 aaaa |
| 1002 | bbbb |
| 1003 cocco|
| 1004 dddd |
| 1003 esee |
| 1006 | ffff|
e —————— Fm——————— +

and the contents of the second flat file is
o ———— o +
|MEMBER ID|MEMEER NAME |
o S S R
| 1001 aaaa |
| 1002 | bbbb |
| 1003 cocco|
| 1004 dddd |
| 1021 uuuu |
| 1022 | UV |
e —————— Fm——————— +

The Union step properties window is set up as follows:

% Union

Union Mode

O Union

Sources

$4.MEMBER_ID
$4.MEMBER_NAME
$5.MEMBER_ID
$5.MEMBER_NAME

In the Sources drop-down list choose ALL.

The output is:

QOutput Columns

X

® Union All
\MEMBER_ID
W
IMEMBER_NAME
R —- _—_———: A +
|MEMEER ID|MEMBER NAME |
e S S R
| 1001 aaaa |
| 1002 | bbbb |
| 1003 cocco|
| 1004 dddd |
| 1021 uuuu |
| 1022 | UV |
| 1001 aaaa |
| 1002 | bbbb |
| 1003 cocco|
| 1004 dddd |
| 1003 esee |
| 1006 | ffff|
tmm—————— Fm——————— +

50

Only the Union All option is available in ELT Maestro for Spark. (In other ELT Maestro editions, the Union option would

remove duplicates.)

51

All rows in Source(A) matching any row in Source(B) will be removed from the result, regardless of how many duplicates

there are. For example if the inputs are as follows:

Source(A):

Source(B):

The output will be:

Fmm +

|MEMEER ID|MEMEER NEME |
———— ————

1001 | aaasa |

1002 bbbkl |

1003 ccocc|

1004 dddd |

1005 esse |

100&| £fff|
o +

Fmm +

|MEMEER ID|MEMEER NEME |
———— ————

1001 | aaasa |

1002 bbbkl |

1003 ccocc|

1004 dddd |

1021 uuun |

1022 | aaa-d
o +
o +

|MEMEER ID|MEMEER NAME |
S S R

1003 esee |

1006 ffff|

Fmm +

Projection (Deprecated)

Introduction
The Project Columns step allows you to drop some of the columns from a dataset

interface. This step is used to limit columns.

. It has a very straightforward

I Project Celumns - O *
Project Columns
Colurmns Ignore Selected | | Refresh
Name |group_id Type |IntegerType [Ignore
MName |user_id Type |IntegerType [] Ignore
Name |user_name Type |StringType Ignore

Cancel

Example,
Simply check Ignore on the columns you wish to drop.

The example above is taken from the following job:

—h_

il

FILNIER PARQUETFILE
o dln —
— | »— — = |
PARQUETFILE

perguet output/dfDistGroupIDX PROJECTICH

52

Aggregate
Introduction

The Aggregate step performs aggregations.

Example,

Suppose the table MEMBER_SCORES contains the following data:

e ————— PR [— +
|MEMBER_ID| PLUSES |MINUSES |
o +o————- +o—————— +
I 1002 4] 5]
| 1002 =1 | 1
| 1002 6] 8
I 1003 &l 6|
| 1003 2] 4]
| 1003 4] Tl
I 1003 1] 6l
I 1006 4] 3]
| 1007 8] 2]
o +o————- +o—————— +

53

We will create a job to aggregate by MEMBER_ID, summing all of the PLUSES with the same MEMBER_ID and averaging
all of the MINUSES with the same MEMBER_ID. The job looks like this:

The properties window for the Aggregate step will be as follows:

Z 2 Standard Aggregate

Standard Aggregate E

Columns

Input

Name |MEMBER_ID

Type | StringType

Input

Name |PLUSES

Type | IntegerType
Input

Name |MINUSES

Type | IntegerType

Cancel

Aggregation Mode Output
® Group O flAgg) Name MEMBER.
Type
Aggregation Mode Qutput
) Group ® flAgg)
sum < Type
Aggregation Mode QOutput
) Group ® fiAgg)
avg v Type

Name |PLUSES SUM

IntegerType v

Name |MINUSES_AVG

FloatType v

We choose Group for the column(s) (in this case, MEMBER_ID) that we are aggregating on, and f(Agg) for the columns
that we are aggregating (in this case, summing on PLUSES and averaging on MINUSES). The interface suggests output
column names and types for the aggregation columns, which you can edit.

In this case, the output will be as follows:

————————— T

|MEMEER ID|PLUSES SUM|MINUSES AVG]|
______ ?__+______?___.'________j___.'_

100&| 4] 3.0]

1007| 8| 2.0]

1003 13] 3.735]

1002| 15 6.3333335]|

54

Filter

Introduction

The Filter step allows you to filter the data flow, using an expression that, in SQL, would be placed in a WHERE clause.
Note that the interface does not parse the expression for syntax errors before runtime; if the expression is complex or if
you are unsure of your SQL syntax, it is best to try it out in an SQL parser beforehand.

Example,
In this example, we use a Parquet file as input to the Filter step:

[PAR [PAR]
parguet_output/dfDistGrouplIDX FILTER PARQUETFILE
The input appears as follows:

¥ Console - O X
Data Source |/parquet_output/dfDistGrouplDX Show “ | Font Size =
o e T +

lgroup idluser_id| user_name|

o e R +

| 31] samuel |

| 31 Sl kingfisher|

| 31 10 rakesh|

| 2] 4 harryl

I 21 5 john|

| Zl 3 nandan |

| 2] 7 bush|

| 11 1 zealot|

| 1l 2 salma |

| 11 3 george |

o oo —— +

Inside the Filter step’s properties, we click on Expression Builder, and enter an expression corresponding to a WHERE
clause.

fx Expression

EXPRESSION

COLUMN
COMSTANT
VARIABLE

OPERATOR

Expression

Expression Attributes

FUMCTION |

SEQUENCE |

d
| upr |
d
d

“group_id >0

< Filter

Input Columns

group_id
user_id

USEr_name

-9

Filter Expression

Expression Builder

“group_id">0

55

Join
Introduction
The Join step performs SQL-type joins on datasets.

Example,
Suppose we have two tables, MEMBER_DATA and MEMBER_SCORES, containing the data

+———————— o ———— +
|MEMEER ID|MEMEEER NAME |
e — —_—t
| 1001 aaas |
| 1002 bEbbb |
| 1003 cccc |
| 1004 dddd |
| 1005 sses |
| 1006 ffff|
o ————— o ———— +

and

o ——— o o ———— +

|MEMBER. ID|FLUSES |[MINUSES |

e o o +

| 1002 | 4 | a2

1003	G	G
1006 4	3	
1007	8	2

e o o +

respectively.

We'll write a job to use the Join step to do an inner join on these two tables.

N tmpfjain_éést

data/member scoreal_cav

56

57

>+ Jain - O X

Input Join Condition(s)

Sources >-’ First Join Source | $4 s Add

$4. (data/member_data0_csv)
$5. (data/member_scores0_csv)

] Reset

Columns Add To Qutput
Qutput Columns
Fix Alias ‘ ‘ Delete ‘ ‘ Clear

First, assign the role of First Join Source (or Left join source) to MEMBER_DATA, by choosing its number (in this case, $4)
from the drop-down list. Then Click on [Add] to add a join expression:

>+ Join - O X
Input Join Condition(s)
Sources >-’ First Join Source | $4 i Add || L bopr | ‘ Delete H Reset
34, (data/member_data0_csv) Type | INNER JOIN <] Join With -
$5. (data/member_scores0_csv)
ON

Columns Add To Output

Output Columns

Fix Alias H Delete H Clear

Choose the join type from the Type drop-down list. In this case, we’ll keep the default choice, INNER JOIN. Choose the
number for MEMBER_SCORES in the Join With drop-down list. (This seems superfluous in this case, since there is only
one other table, but Join can take more than two inputs, so in general, there may be more than one choice.). Now click
on the Expr button.

58
This will bring up an expression editor:

f; Expression x

EXPRESSION

Expression Attributes

COLUMN ¥ FUNCTION “
CONSTANT ¥ UDF "
VARIABLE " SEQUENCE v
QOPERATOR ¥

Expression

$4."MEMBER_ID"=$5."MEMBER_| D1

Enter an appropriate join expression in the editor —in our case, simply $4."MEMBER_ID'=S5."MEMBER_ID". (Remember
that column names must be surrounded by backquotes (°), as shown in the example. The COLUMN dropdown list will
automatically supply them, but if you type the column names in yourself, the backquotes are your responsibility!)

Click [OK] to return to the properties window.

Now we must decide what columns get mapped from the input to the output.

>+ Join - m] X
Input Join Condition(s)
Sources D= First Join Source | $4 © Add [Delete || Reset
$4. (data/member_data0_csv) Type | INNERJOIN | soinwith | s5 -

§5. (data/member_scores0_csv)

ON |54 MEMBER ID'=S$5. MEMBER ID’

Columns Add To Output

Qutput Columns

Fix Alias H Delete H Clear

59

The input tables are listed in the upper left-hand corner, under Sources. Clicking on each source will cause that source’s
columns to appear in the Columns section:

>+ Join

Input Join Condition(s)

Sources >-b First Join Source | $4 = Add H Expr H Delete H Reset

:$4. (data/member_data0_csv)
$5. (data/member_scores0_csv)

Type | INNER JOIN ~ | Join With | $5 ~

ON

Columns Add To Output

[$4MEMBERID |

[s4.MEMBER NAME \

Qutput Columns

Fix Alias H Delete || Clear

oz

Then select the columns you wish to add to the output and Click the Add to Output button. You can select multiple
columns at once by using the shift key. In our case, we'll add both MEMBER_ID and MEMBER_NAME from the

MEMBER_NAMES dataset to the output. Then Click on the MEMBER_SCORES source and add PLUSES and MINUSES to
the output.

>+ Join

Input Join Condition(s)

Sources >-’ First Join Source | $4 v Add || Expr H Delete H Reset

$4. (data/member_data0_csv)
$5. (data/member_scores0_csv)

Type | INNER JOIN ¥ | JoinWith | §5 v

ON [$% TMEMBER ID'=$5. MEMBER ID"

Columns

|$5.MEMBER_ID |

|§5.pLUSES |

[$5.MINUSES \

Qutput Columns

Fix Alias H Delete H Clear
Name $4.MEM
Type Alias |MEMBER_ID
Name |$4.MEN
Type StringType Alias |MEMBER_NAME

Click [OK] to exit the properties window.

60

You will still need to complete the job by mapping the join output to an output stage and setting up the output stage by
giving it the name of an output file and setting its other properties.

After running the job with the following input:

o ————— e —————— +
|MEMEER ID|MEMBER NEME |
+————— —t———— ————
| 1001 | aaasa |
| 1002 bEbbb |
| 1003 cccc |
| 1004 | dddd |
| 1005 s==s |
| 100g| f£ff|
o ————— e —————— +

and
————————— o —————+
| MEMBFR ID|PLUSES|MINUSES |

—————— 4

1002 | 4| 3
1003 @ | @
100g | 4| 3|
1007 | g | 2]
————————— Fmm— b ——— %

the output will be

+————— +—————— +————— +—————— +
| MEMEER ID|MEMEER NAME | ELUSES|MINUSES |
+————— S S — +—————— +
| 1002 | bbbh | 4| S|
| 1003 ccoco| 8| 8|
| 1006 | FEEF| 4| 3
e —————— o —————— +————— e ———— +

Had we chosen Join type of LEFT OUTER JOIN, the output would be

e e +o————= e +
| MEMBER ID|MEMEER NAME | FLUSES |MINUSES |
e ——— - S P — e +
| 1001 azasa| null | null |
| 1002 bEbbb | 4] 5]
[1003 ccGc| | 6|
| 1004 | dddd]| null] null |
| 1005 seese | null| null |
| 1006 ffff| 4] 31
e e e e +

The output for FULL OUTER JOIN would be

-———————— -—————————— -—————— -——————— -
|MEMEEE ID|MEMEBEEE WNAME | FLUSES |MINUSES |
+—————— ——— e o ———— +
100	ffff	4	3
1003	cccc	G	G
1002	bbbb	4	2
[1004	dddd	null] null	
1005 s	null	null	
1001	aaaa	null	null
[null | null | 8| 2]

62

Function

Introduction

The Function step allows you to apply functions to columns and combinations of columns. The functions may be
mathematical functions, string manipulation functions, date and time manipulation functions, conversion functions, or
other functions appropriate to the data types. The Function step allows you to create new columns and to drop exiting
columns.

Example,
The Function step must be connected to a source of metadata for you to access its properties. Suppose the
Function step is connected to a data source as shown below:

parquet_input/DIM CONTENT_FILE FUNCTION

The properties window for the Function step will initially appear as follows:

Jx Function - O X
Input Output

Input Column(s) Output Column(s) / Expression(s) | adabr || eat || Deete || clear |
[BDA_PROC_DT

[cONTENT_ID

|CONTENT_NAME

[copvcompLeTE

[cReATED B

|CREATED_DATE

[DOCUMENTHASH
[EFFECTIVEDATE
[FILE_sizE
[IRMDOCID

|

|

|

\

|

|

[DESCRIPTOR_ID |
\

|

|

|

[1sEsiGNED |
|

1S_COMPRESSED

f; Expression

EXPRESSION

Expression Attributes

COLUMN e FUNCTION ¥
CONSTANT ¥ UDF ¥
VARIABLE N SEQUENCE N
OPERATOR ¥
Expression
UPPER(MEMBER_NAME)
. - O X
Original column
left unchanged [oject Columnts)
Structure (Expression-Alias-DataType) x | Add || Delete || Edit
MEMBER_ID MEMBER_ID INTEGER
UPPER(MEMBER_NAME) MEMBER_NAME VARCHAR(30)
SQRT(MEMBER._ID) REAL_ MEMBER_ID DOUBLE
Column altered \ New column created
by function from old column

Cancel

Input and output for this example:

MEMBER_ID MEMBER_NAME

MEMBER_ID MEMBER_NAME REAL_MEMBER_ID

1004 "dddd” 1001 “AAAAT 31.63858403911275
1002 “bbbb" 1002 "EEBB" 31.654383582688826
1001 “aaaa” 1003 "CCCCT 31.670175244226233
1003 "cece” 1004 "‘DDDD" 31.68595903550972

63

64

SCD2

Introduction
SCD2 implements “Slowly Changing Dimensions Type 2.”

In data warehousing, some attributes of objects, such as, say, the prices of Veggie Burgers, may be referred to as
dimensions, and stored as columns in dimension tables. Sometimes those attributes change, slowly relative to the
frequency of loading the data warehouse — so, for example, a restaurant might raise the price of its Veggie Burgers. In
this case they are referred to as slowly changing dimensions. 1t is often considered desirable to have a system that
keeps track of the changes to dimensions, and makes it clear not only what the current value of the dimension is (in our
example, what the current price of Veggie Burgers is), but also makes it possible to discover what the previous values
were.

SCD2 is one of several ways to implement such a system. In SCD2, rows associated with dimension values are marked
with effective timestamps and expiration timestamps. The row with the current dimension value will have the most
recent effective timestamp and an expiration timestamp of “infinity” (usually something like 12/31/9999 23:59).

Example,
id name type_key price modified_date dim_id eff_ts exp_ts
1 Chicken Burger 1 $3.70 10/7/2016 19:03 1 10/7/2016 19:03 12/31/9999 23:59
2 Veggie Burger 1 $3.20 10/7/2016 19:03 2 10/7/2016 19:03 12/31/9999 23:59
3 French Fries 2 $2.00 10/7/2016 19:03 3 10/7/2016 19:03 12/31/9999 23:59
4 Twister Fries 2 $2.20 10/7/2016 19:03 4 10/7/2016 19:03 12/31/9999 23:59

Consider the example shown above. Here we see the initial state of a price dimension table for restaurant food
items. The fields id and name identify a certain food item, so, for example, id = 1 will always be a Chicken Burger,
and id = 3 will always be French Fries. The type_key field identifies food type — for example, burgers, vs. fries.
The dim_id is a unique identifier for the row. The modified_date field is the time when the values in the row were
last changed, and will be the same as the effective timestamp. The effective timestamp (“eff_ts”) of all of the
items is 10/7/2016 19:03, and the expiration timestamp (“exp_ts”) for all items is 12/31/9999 23:59, meaning that
all items are current. In particular, the current price of a Veggie Burger is $3.20.

Next, we update the price of Veggie Burgers, so that the price is now $3.25.

id name type_key price modified_date dim_id eff_ts exp_ts

1 Chicken Burger 1 $3.70 10/7/2016 19:03 1 10/7/2016 19:03 12/31/9999 23:59
2 Veggie Burger 1 $3.25 10/7/2016 20:08 5 10/7/2016 20:08 12/31/9999 23:59
2 Veggie Burger 1 $3.20 10/7/2016 19:03 2 10/7/2016 19:03 10/7/2016 20:08
3 French Fries 2 $2.00 10/7/2016 19:03 3 10/7/2016 19:03 12/31/9999 23:59
4 Twister Fries 2 $2.20 10/7/2016 19:03 4 10/7/2016 19:03 12/31/9999 23:59

The table above has been updated to reflect the price change according to the SCD2 scheme. The row with the
old price, identified by dim_id = 2, has been “expired,” by setting exp_ts to 10/7/2016 20:08. We have created a
new row, identified by dim_id = 5, where price is now $3.25. We know that the latter row, where price = $3.25
and dim_id = 5 is the current row because its exp_ts is 12/31/9999 23:59. The table thus contains an indication of
the current row as well a history of the previous prices.

How to Use the SCD2 Step

65

The SCD2 Step automates the maintenance of an SCD2 scheme like the one shown above. The user must provide
appropriate input and dimension tables, and must label the columns as to their role. In the example below, we’ll
show how to use the SCD2 step to obtain a dimension table like the one above.

The source for our dimension table is a table called prices, which initially looks like this:

id name type_key
1 Chicken Burger 1
2 VeggieBurger 1
3 French Fries 2
4 Twister Fries 2

We must also create another table called prices_dim, consisting of all of the columns of the prices table plus, if
they do not already exist, the columns dim_id, eff _dt, and exp_dt, which are BIGINT, TIMESTAMP, and

TIMESTAMP respectively.

price
$3.70
$3.20
$2.00
$2.20

We will set up a simple, two-step ELT Maestro job as shown below:

prices '

The table step on the left is connected to the prices table.

% Slowly Changing Dimension Type Il

General | Dimension Property
Target SCD2 Dimension Table
Database
Schema

Table

Columns (M=Match Rows, C=Check For Change, X=Ignore)

Cancel

Now open the properties of the SCD2 step:

modified_date
10/7/2016 19:03
10/7/2016 19:03
10/7/2016 19:03
10/7/2016 19:03

- O X

| ®

Browse

In the General tab, click on the Browse button and navigate to and select the prices_dim table:

66

% Slowly Changing Dimension Type Il - O x

General | Dimension Property

Target SCD2 Dimension Table

Database hello_db

&

Schema public

Columns (M=Match Rows, C=Check For Change, X=Ignaore)

id QMOCJX‘
name QMOCJX‘
{WP"-“EY QMOC-@X‘
‘price OM@COX‘
‘modiﬁed_date OMDC@X‘
‘dim_id quch‘
eff_ts QMQCQ)X‘
exp_ts OMOC®)(‘

Each column in the dimension table needs to be classified as either a match (M), check for change (C) or ignore (X)
column. The columns that identify the object as the one described by the attribute (aka dimension) in question
should be marked with an M. In our case, these columns are id and name. The dimension itself — the column or
columns whose change we are tracking are marked with a C — in our case, the price column. All other columns
should be marked with an X.

% Slowly Changing Dimension Type Il - m] X
General | Dimension Property

Columns Column Roles (Drag and drop here)

; ‘id DIM dim_id

‘name Effective_TS eff_ts

‘TYDE_kEV Expiration TS~ exp_ts

‘price

|
|
\
\
‘mcd\ﬁed,date ‘
|
|
\

[dim_id
‘ eff_ts
‘ exp_ts

On the Dimension Property tab, we specify which columns fill the roles of dimension identifier, effective
timestamp, and expiration timestamp; in our case these will be the columns we created for this purpose.

67

In some cases, a preexisting column from the input table may fill one of these roles — for example, we could have
used modified date as our effective timestamp.

@ JOB_SCD2_DFR (REDSHIFT) - O x
- Input Mapping Output b
INPUT COLUMNS OUTPUT COLUMNS
id I L 1ia \
‘name |I —F—I|name ‘
‘type_key |I > =I|y|:e_key ‘
‘price |I —P—I|price ‘
‘modlfiecl_clate |I > IImodlﬂecl_clate ‘
\‘\:kim_icl ‘
|Eff_ts ‘
I|Exp_ts ‘
- -
My .
1
14 CANCEL OK / SAVE
b (e ——— S —
10/10/2016 1:11:26 BPM INFO: JOB_SCDZ_DFR (JOB) Constants Initialized: 3
10/10/2016 1:11:26 PM ERROR: _JOB _SCD2 DER_(JOB) _cCanpot Jload (initializeUdf). obdect reference not set to an

After clicking OK in the Dimension Property tab, the user is shown the mapping editor. In our case, we want to
make sure that modified_date in the prices table maps to eff_ts (effective timestamp) as well as modified_date in
the prices_dim table.

After clicking OK/SAVE, the job will be set up correctly to update the prices_dim table according to the SCD2
scheme.

Smart Script

Introduction
Smart script step is an item list processor. Let us define a simple use case to better understand how this step can
be utilized.

Use Case

| have hundreds of text files on a Linux machine located at folder path(/home/maestro/files). | want to compress
these files using gzip command. Ideally, | want to call 8 parallel gzip commands so that the process can be faster
utilizing a multi core system. Then | want to run another script in parallel using 4 threads that does something
with compressed files.

Design Template
> [INPUT] is provided in form of a list of values generated by script. This list can be output of a shell script
or SQL. If shell script is provided the program splits standard output by new line and converts into array of
values so that each line is a value item. If SQL script is provided the program retrieves array of value from
the first column so that each row of first column is a value item.
> |[DECLARATIONS] are done to convert value from one form to another. You can only use echo command
to convert single input value to another.

> [ACTIONS] are final execution of either SQL or SHELL script. Variable declarations and conversions

performed on previous step are referenced here. You can specify number of parallel calls in action.
Note: You can only declare and reference variables with $ prefix.

Figure: Smart Script [INPUT]
Smart Script

Initial Source | Variable Declaration(s) | Action(s)

Provider

(®) SHELL Script () Source Step

Provider Script Detail (SSH/SQL)
Connection SSH_CONMNECTION

. ls -1 /home/maestro/files
Script

Cancel Save

In this phase [INPUT]

| am running a shell script to list all file names located on a specified directory running Is command.
My input command to generate files list is Is -1 /home/maestro/files

Figure: Smart Script [Declaration]

Smart Script

Initial Source | Variable Declaration(s) | Action(s)

Variables {per SLINE) Add Variable Remove Variable Clear All

SLINEITEMO
Name |SLINEITEMO

Value |echo §COLUMN

SFILENAME_TXT
Name |$FILE NAME TXT

Value |echo $LINEITEMD tr —d "\n'

SFILENAME_GZ
Name |$FILE_NAME GZ

Value |echo $LINEITEMO.gz | tr -d '\n'

Cancel Save

69

In this phase [Declaration]

The first declaration SLINEITEMO has default value SCOLUMN. Each output line from previous initial step is
assigned to SCOLUMN during runtime. The first declaration just copies that value into SLINEITEMO using echo
command.

The second declaration SFILE_NAME_TXT = echo SLINEITEMO | tr -d '\n' does pretty much the same thing, but it
removes new lines from value and assigns to SFILE_NAME_TXT.

The third declaration SFILE_NAME_GZ = echo SLINEITEMO.gz | tr -d '\n' calculates that the compressed file name
is going to be.

Why 3 declarations?
When | run gzip command, the name of file gets changed to it’s original name and extra extension is added. So if
input has value file.186.txt, the file name changes to file.186.txt.gz after running gzip command on action tab.

Figure: Smart Script [Action]
Smart Script - O X

Initial Source | Variable Declaration(s) | Action(s)

Actions (per SLINE or variable) Add Action Remove Action Clear All

Run Shell Script | Script ¢ gzip /home/masstro/files/¢FILE_NAME TXT

Action Type Option
(®) S5H Script 0 SOL Seript Threads | 8 v Skip Empty Value
Connection

SSH_CONMECTION ©

Run Shell Script | Script ¢ec}:3 "Path to compressed file is /home/maestro/files/$FILE_NAME GZ"

Action Type Option
_) SQL Seript Threads | 4 v Skip Empty Value

Connection
SSH_COMNECTION -

Cancel Save

In this phase [Action]
| am running gzip command in parallel mode using 8 threads at a time until all files are compressed. Then | have
second action which runs echo command using 4 threads at a time.

Rules
> Initial source must be provided by either a shell script or sql script
» Declarations can only be done by shell script
» Actions could be either

Contact us
Email: zdave@maestro-analytics.com

Website: www.maestro-analytics.com

70

mailto:zdave@maestro-analytics.com
http://www.maestro-analytics.com/

