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Abstract Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906–1999
average, the worst 15-year drought on record. At least one-sixth to one-half (average at one-third) of this
loss is due to unprecedented temperatures (0.98C above the 1906–1999 average), confirming model-based
analysis that continued warming will likely further reduce flows. Whereas it is virtually certain that warming
will continue with additional emissions of greenhouse gases to the atmosphere, there has been no
observed trend toward greater precipitation in the Colorado Basin, nor are climate models in agreement
that there should be a trend. Moreover, there is a significant risk of decadal and multidecadal drought in
the coming century, indicating that any increase in mean precipitation will likely be offset during periods of
prolonged drought. Recently published estimates of Colorado River flow sensitivity to temperature
combined with a large number of recent climate model-based temperature projections indicate that
continued business-as-usual warming will drive temperature-induced declines in river flow, conservatively
220% by midcentury and 235% by end-century, with support for losses exceeding 230% at midcentury
and 255% at end-century. Precipitation increases may moderate these declines somewhat, but to date no
such increases are evident and there is no model agreement on future precipitation changes. These results,
combined with the increasing likelihood of prolonged drought in the river basin, suggest that future climate
change impacts on the Colorado River flows will be much more serious than currently assumed, especially if
substantial reductions in greenhouse gas emissions do not occur.

Plain Language Summary Between 2000 and 2014, annual Colorado River flows averaged 19%
below the 1906–1999 average, the worst 15-year drought on record. Approximately one-third of the flow loss
is due to high temperatures now common in the basin, a result of human caused climate change. Previous
comparable droughts were caused by a lack of precipitation, not high temperatures. As temperatures increase
in the 21st century due to continued human emissions of greenhouse gasses, additional temperature-induced
flow losses will occur. These losses may exceed 20% at mid-century and 35% at end-century. Additional
precipitation may reduce these temperature-induced losses somewhat, but to date no precipitation increases
have been noted and climate models do not agree that such increases will occur. These results suggest that
future climate change impacts on the Colorado River will be greater than currently assumed. Reductions in
greenhouse gas emissions will lead to lower future temperatures and hence less flow loss.

1. Introduction

A large number of studies over the last 25 years have considered the future runoff of the Colorado River
(Figure 1) under climate change. Nearly all of these studies have cautioned that future warming will
deplete the flow of the river, but the results have varied from minor to major [Nash and Gleick, 1991;
Christensen et al., 2004; Milly et al., 2005; Brekke et al., 2007; Christensen and Lettenmaier, 2007; National
Research Council, 2007; Seager et al., 2007; Barnett and Pierce, 2008; Ray et al., 2008; Barnett and Pierce,
2009; Rajagopalan et al., 2009; Cayan et al., 2010; Reclamation, 2013; Harding et al., 2012; Seager et al.,
2012; Vano et al., 2012; Ficklin et al., 2013; Vano et al., 2014; Ayers et al., 2016; Milly and Dunne, 2016]. In
contrast, the latest U.S. Government assessment implies little or no change is likely because precipita-
tion increases will be sufficient to maintain temperature-depleted flows [Reclamation, 2016]. Fifteen
years into the twenty-first century, the emerging reality is that climate change is already depleting
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Colorado River water supplies at the upper end of the range suggested by previously published projec-
tions. Record setting temperatures are an important and underappreciated component of the flow
reductions now being observed.

Between the start of the drought in 2000 and the end of 2014, our analysis period, annual flow reductions
averaged 19.3% below the 1906–1999 normal period, and Lakes Mead and Powell, the nation’s two largest
reservoirs, ended the period at approximately 40% of maximum volume despite starting the period nearly full
[Wines, 2014; Colorado River Basin Stakeholders, 2015] (Figure 2a). This drought has continued into 2015 and
2016 with higher, but still below normal, flows estimated at 94% in 2015 and 94% in 2016 with unusual late
season May and June precipitation in both years that raised runoff by nearly 20% [Alcorn, 2015, 2016]. Despite
these smaller recent reductions, Lake Mead continues to decline and in May 2016 it hit a level not seen since
its initial filling in the 1930s [James, 2016]. The overall Colorado River reservoir system stores 4 times the annu-
al flow of the river, one of the largest ratios in the world. This storage provides a large drought buffer when
full. However, when the reservoirs are low, shortage risk can be high for years because high demands, now
equal to twentieth century average flow, make it difficult to refill system storage [Reclamation, 2012]. While
the multiyear California drought has been garnering more national attention, the more slowly unfolding Colo-
rado River drought is every bit as serious and also has national and international ramifications [Wines, 2014].

The Colorado River Basin encompasses seven states and northern Mexico and is home to 22 federally recognized
tribes. The river provides municipal and industrial water for 40 m people distributed across every major South-
western city both within and without the basin, including Los Angeles, San Diego, Las Vegas, Phoenix, Tucson,
Salt Lake City, Denver and the entire Front Range of Colorado, Albuquerque, and Santa Fe [Reclamation, 2012].

Continued low flows would result in additional declines at Lake Mead, eventually requiring Lower Basin
(Arizona, California, Nevada) water delivery shortages with mandatory cutbacks imposed primarily on
Arizona, but also Nevada and Mexico [Verburg, 2011]. At the same time, Upper Basin (Colorado, New Mexico,
Utah, Wyoming) water users would continue to endure physical shortages from a lack of water. These initial
Lower Basin Lake Mead delivery shortages and Upper Basin physical shortages are manageable to a point;
however, under current operating rules with continued low flows during the next 6 to 8 years Lake Mead
would drop to elevation 305 m (1000 feet) above sea level, resulting in a number of serious and unprece-
dented problems [Collum and McCann, 2014].

In the Lower Basin, Arizona could theoretically lose its water allocation for the entire Central Arizona Project
canal, a critical $4.4B, 530 km cross-state 2 bcm/yr water source for 4.7 m people, multiple sovereign Indian

Figure 1. Map of the Colorado River Basin. Lower and Upper Basins, major U.S. cities receiving Colorado River water, major tributaries, and
Lakes Mead and Powell are shown. The Central Arizona Project canal in red.
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nations, and over 120,000 irrigated hectares [Glennon, 1995; Colorado River Basin Stakeholders, 2015]. This
canal currently relies on occasional but uncertain ‘‘equalization’’ releases from Lake Powell that only occur
with irregular and rare large Powell inflows. The extra water is delivered when Lake Powell reaches levels
substantially higher than Lake Mead, a use allowed under the 1922 Colorado River Compact section III (e)
and formalized most recently under rules established in a 2007 Record of Decision for coordinated opera-
tions of Lakes Powell and Mead and for shortage sharing in the Lower Basin [Department of Interior, 2007].

Under normal operating rules, without these extra inflows, Lake Mead has excess outflows of 1.5 bcm per
year, the so-called Lower Basin ‘‘structural deficit’’ [Collum and McCann, 2014]. The structural deficit was cre-
ated in 1968 when Congress authorized the Central Arizona Project (CAP). In order to obtain the support of
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Figure 2. (a) Lakes Mead and Powell combined monthly contents. Upper Basin annual Colorado River (b) runoff at Lees Ferry from 1906 to
2014, (c) precipitation and (d) temperatures from 1896 to 2014. Mead first filled in 1935, Powell in 1963 (supporting information Text S1).
Two 15-year drought periods, 1953–1967 and 2000–2014, are highlighted and discussed in main text.
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the large California Congressional delegation, Arizona agreed to rely on this unused, but in the long run
unreliable water, because there was not enough remaining unallocated Lower Basin water. The CAP had
long been a desire of Arizona and the state was willing to make this bargain despite its flaws [Johnson,
1977]. This same water is first available for use by the Upper Basin under the Colorado River Compact, but
heretofore has not been developed for Upper Basin use. A plan to augment the Colorado River with flows
from outside the basin, discussed during the hearings on the legislation, but not included in the final pack-
age due to opposition from potential source areas, was never revisited by Congress. Reclamation in 2011
said that such augmentation was now unlikely.

The structural deficit only became a problem when the CAP was fully completed in the mid-1990s com-
bined with the drought that began in 2000. Upper Basin demand growth has also played a small role,
although Upper Basin demands are still much less than forecast in 1968 for the year 2000 [Tipton and
Kalmbach, Inc., 1965; Johnson, 1977]. The recent Lake Mead declines are strongly influenced by this
imbalance, and solutions to this deficit have been a recent focus of the Basin states and federal government
[Central Arizona Project, 2016; Davis, 2016].

The Upper Basin also has serious issues, one of which ripples into the Lower Basin. When the surface of
Lake Mead declines to an elevation 305 m (1000 feet) above sea level, Lake Powell will also be below its
minimum power pool 75% of the time [Collum and McCann, 2014]. This occurs in part because low Mead
levels make ‘‘equalization’’ releases from Powell more likely thus driving Powell lower. Hydropower losses at
Lake Powell could result in substantial rate increases for irrigators who rely on the reservoirs for long term
lower cost power contracts, and would also dry up funding for basin-wide programs necessary for water
delivery environmental compliance [Adler, 2007; Collum and McCann, 2014]. Under such low reservoir condi-
tions, there is also a high likelihood that the Upper Basin states would have to curtail existing water deliver-
ies to cities such as Denver, Colorado Springs, Albuquerque and Salt Lake City in order to make required
deliveries to Lake Mead. Heretofore, largely because of the structure of the Colorado River Compact, the
Upper Basin and Lower Basin have been managed separately. With permanent flow declines of approxi-
mately 20%, however, the required deliveries to Lake Mead would become a hardship on the Upper Basin,
as well as create Lower Basin delivery shortages [Reclamation, 2007; Barnett and Pierce, 2009; Rajagopalan
et al., 2009]. The original compact, signed during one of the wettest periods in the last 450 years
[Woodhouse et al., 2006], did not envision how large scale flow declines would be managed between the
basins, and such declines could cause an allocation crisis between the Upper and Lower Basins [Adler, 2008].

Understanding the cause of, and reacting properly to, the ongoing drought is critical to the future of the
Southwest. Herein we investigate the role of precipitation versus temperatures as causes of the current
drought, provide temperature-based and precipitation-based twenty-first century flow projections and pro-
vide policy implications of these findings. Our approach separates the impacts of high-confidence tempera-
ture projections from those associated with the much lower-confidence projections of future precipitation
using a simple but powerful sensitivity technique. Moreover, we make a novel—and important—case that
there is a high likelihood that the impacts of continued atmospheric warming will overwhelm any future
increases in precipitation because prolonged dry periods lasting multiple decades are likely to negate the
beneficial impacts of additional precipitation during other times.

2. Causes of the 2000–2014 Drought

The 2000–2014 drought is defined by the lowest average annual flows for any 15-year period in the histori-
cal record. To analyze this drought, gridded 4 3 4 km temperature and precipitation data from 1896–2014
for the area above Lees Ferry were obtained from the Precipitation-Elevation Regression on Independent
Slopes (PRISM) model [Daly et al., 1994; Guentchev et al., 2010; Oyler et al., 2015a, 2015b; Rangwala et al.,
2015]. In addition, we obtained reservoir contents and natural flows at Lees Ferry from the U.S. Bureau of
Reclamation (Reclamation) (Text S1). Lees Ferry is situated just below Lake Powell and is the Compact divid-
ing line between the Upper and Lower Basins. Approximately 85% of the flow originates above Lees Ferry
[Christensen and Lettenmaier, 2007].

Historically, Upper Colorado River Basin precipitation has been the main Colorado River runoff driver such
that high flow years (1920s, 1980s) were associated with high precipitation and low flow years (1930s,
1950s) with low precipitation (Figures 2b and 2c). The current drought (our study period is 2000–2014, but
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the drought is still on-going), with its modest 24.6% precipitation decline and 219.3% flow decline, stands
in stark contrast to the second-lowest 15-year flow period (1953–1967), a precipitation-driven drought with
averaged precipitation reductions of 26.1% per year and flow reductions of 218.1% per year (Figures 2b
and 2c and Table 1). Compared to the 1950s drought, the 2000s feature much more (near normal) winter
precipitation (28.6% 1950s decline versus 22.7% 2000s) and significantly less summer precipitation
(23.6% 1950s decline versus 26.4% 2000s). The 2000s precipitation decline is only 75% of the decline in
the 1950s, thus begging the question of why the recent drought was more serious. What has changed is
that temperatures in the runoff producing Upper Basin are now 0.98C above the 1896–1999 average and
are the highest in the gaged record; whereas temperatures during the 1953–1967 drought were much cool-
er and only slightly above the 1896–1999 average (Figure 2d and Table 2). This makes the current drought
unprecedented in the gaged record.

In contrast to the more precipitation-driven current California drought [Diffenbaugh et al., 2015; Williams
et al., 2015], lack of precipitation is only partially to blame for the Colorado River runoff declines during the
last 15 years. Instead, approximately a third, or more, of the recent Colorado River flow reduction is most
likely a result of record-setting warmth. Since 1988 an increase in the frequency of warm years has been
strongly associated with lower flows than expected [Woodhouse et al., 2016], suggesting an important role
for temperature in flow losses. Such temperature-driven droughts have been termed ‘‘global-change type
droughts’’ and ‘‘hot drought,’’ with higher temperatures turning what would have been modest droughts
into severe ones, and also increasing the odds of drought in any given year or period of years [Breshears
et al., 2005; Overpeck, 2013]. Higher temperatures increase atmospheric moisture demand, evaporation
from water bodies and soil, sublimation from snow, evapotranspiration (ET) from plants, and also increase
the length of the growing season during which ET occurs [Pitman, 2003; Weiss et al., 2009; Seneviratne et al.,
2010; Seager et al., 2015a]. Warm season (April to September) warming has been identified by models as
especially important in reducing Colorado River flows because of the increases in ET from longer growing
seasons [Das et al., 2011]. Increases in measured vapor pressure deficits in the Southwest caused by warm-
ing and a decrease in water vapor provide strong support for higher ET during the recent drought [Seager
et al., 2015b]. As increasing temperatures drive further drying, additional positive feedbacks are possible in
the form of lower humidity and less evaporative cooling, decreased cloudiness and increased incident radia-
tion, as well as decreased snow cover and more radiative heating [Betts et al., 1996; Brubaker and Entekhabi,
1996; Pitman, 2003; Seneviratne et al., 2010]. In the twentieth century, droughts were associated almost
exclusively with a lack of precipitation. In this century, however, high temperatures alone can lead to anom-
alously dry conditions.

3. Estimates of 2000–2014
Temperature-Induced Flow
Loss

Over the last several years several
studies specific to the Colorado River
Basin have investigated the specific
relationships among temperatures,
precipitation and flow in the basin
using the concepts of temperature

Table 1. Winter/Summer/Annual Upper Basin Mean Water Year Precipitation

1953–1967 2000–2014 1896–2014

mm mm mm

Total Anomaly
Anomaly % of

Mean (%) Total Anomaly
Anomaly % of

Mean (%) Mm % Avg

Winter (Oct to Mar) 176 216 28.6 187 25 22.7 192 100
Summer (Apr to Sep) 184 27 23.6 179 212 26.4 191 100
Total 359 223 26.1 365 217 24.6 383 100

Table 2. Upper Basin Water Year Flows and Temperatures

Average Annual Flow
Average Annual

Temperature

Period bcm % 1906–1999 8C
8C Anomaly to

1896–1999

1953–1967 15.38 81.9 7.0 0.2
2000–2014 15.15 80.7 7.7 0.9
1906–1999 18.77 100.0 6.8 0.0
1906–2014 18.27 97.3 6.9 0.1
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sensitivity and precipitation elasticity [McCabe and Wolock, 2007; Nowak et al., 2012; Vano et al., 2012, 2014; Vano
and Lettenmaier, 2014]. Temperature sensitivity is defined as the percent change in annual flow per degree rise
in annual temperature. Precipitation elasticity is defined as the fractional change in annual flow divided by the
fractional change in annual precipitation [Vano et al., 2012]. Note that elasticity has been studied for both
increases and decreases in precipitation, whereas sensitivity is typically investigated only for temperature
increases. These numbers can be determined empirically and through model studies.

Previous studies on temperature sensitivity and precipitation elasticity show that future impacts to stream-
flow from increases in temperatures and changes in precipitation can be considered separately using sensi-
tivity and elasticity, and then added together to produce flow estimates [Vano et al., 2014; Vano and
Lettenmaier, 2014]. Considering these effects separately and additively is a powerful conceptual tool for
investigating climate change impacts because of the ease in measuring the two variables for current
impacts and the wide availability of temperature and precipitation projections from global climate models
for assessing future impacts. In addition, the large differences in certainty associated with future changes in
the two variables (temperature will surely increase, whereas precipitation may increase or decrease—see
below) helps to set apart the risk of future changes in flow associated with each variable.

Vano et al. [2012, 2014], McCabe and Wolock [2007], and Nowak et al. [2012] provide multiple estimates of
the flow sensitivity of the Colorado River flow to temperature using three different methods. Vano et al.
[2012, 2014] utilized six high-resolution, commonly used hydrology models and two different temperature
adjustment methods to obtain Lees Ferry temperature sensitivities. They report an average sensitivity of
26.5%/8C warming with a one standard deviation range from 23.0% to 210.0%/8C for the Upper Basin.
Approximately 50% models show increasing sensitivity and 50% decreasing sensitivity as temperatures
warm so we elect to use a constant sensitivity over all future temperatures. McCabe and Wolock [2007] con-
structed a simple water balance model that infers an average temperature sensitivity of 28.9%/8C and
Nowak et al. [2012] found an empirical temperature sensitivity of 213.8%/8C.

We use the complete one standard deviation range (23%/8C to 210%/8C) of the Vano et al. [2012, 2014]
temperature sensitivity estimates as they were the most conservative and rigorous of the three studies we
investigated. Using this range, we found that recent warming of 0.98C has likely already reduced river flows
from 22.7% to 29% from the mean 1906–1999 flow. This represents approximately one-sixth to one-half
(average of one-third) of the total flow loss during the 2000–2014 drought.

The higher temperature sensitivities of the two other studies suggest the actual Colorado River temperature
sensitivities are near the upper end and possibly exceed the Vano et al. [2012, 2014] estimates. These higher
sensitivities imply much greater temperature-induced losses during the current drought (27.9% to 212.3%
versus 22.7% to 29%). Empirical results from the 2000 to 2014 drought also point to mid to high tempera-
ture sensitivities. Vano et al. [2012] report precipitation elasticities ranging from 2 to 3 at Lees Ferry. Thus,
using a midrange precipitation elasticity of 2.5, the 2000–2014 annual 24.6% precipitation decline implies
runoff reductions of 211.4%, leaving the remaining 27.9% decline to be explained by other causes. If tem-
perature were the sole cause of this remaining decline, the inferred temperature sensitivity is 28.8%/8C.
Using a precipitation elasticity of 3.0 implies a temperature sensitivity of 26.2%/8C, very close to the mid-
range Vano et al., sensitivity. These temperature sensitivities imply large losses as temperatures rise, the
subject of the next section.

4. Twenty-First Century Flow Response to Changing Temperatures and
Precipitation

For the analysis on how future temperatures and precipitation would affect runoff, and for investigating how
well current linked climate-hydrology models can reproduce the current drought, we used Reclamation’s cli-
mate projection data sets [Brekke et al., 2013, 2014]. These data sets use Coupled Model Intercomparison Pro-
ject 3 and 5 (CMIP3, CMIP5 after the class of climate models used) climate model projection data linked to the
Variable Infiltration Capacity hydrology model to produce flows from 1950 to 2099 (supporting information
Text S2, Figures S2, and S3)] [Liang et al., 1996; Meehl et al., 2007; Moss et al., 2010; Taylor et al., 2012].

The same temperature sensitivity and precipitation elasticity numbers discussed above can be used to esti-
mate future flow reductions using climate model outputs under high (business-as-usual, SRES A2 and
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RCP8.5) and moderate (somewhat reduced by mitigation, SRES A1B and RCP4.5) greenhouse gas emissions
to the atmosphere. By 2050, moderate and high emissions are projected to yield Upper Basin mean warm-
ing of 2.6–2.88C (Figure 3), three times recent warming, and by 2100, warming of 3.68C under moderate
emissions and 5.48C under high emissions. This warming implies total multimodel mean temperature-
induced flow losses at midrange sensitivity of 26.5%/8C of about 217% by midcentury and 225% to
235% at end-century (Figures 4 and 5). The multimodel mean complete flow loss range over both periods
and both emissions is approximately 28% to 255% using the lower and upper temperature sensitivities
(Figures 4 and 5). As discussed above, there is little empirical evidence that the true temperature sensitivity
of flow to temperature increase is near the low sensitivity.

Temperature-induced losses may be somewhat buffered by projected additional precipitation that can increase
runoff by 2–3% for every 1% change in precipitation [Vano et al., 2012]. At midcentury precipitation increases of
14–111% given a midrange elasticity of 2.5 would balance the range of temperature-induced flow losses at a
midrange—6.5%/8C sensitivity (Figure 5, right y axis). At end-century, with the same sensitivity and elasticity,
additional precipitation increases of 14–120% would balance the range of possible temperature-driven losses.
At a higher 210%/8C sensitivity, the balancing precipitation would need to be as great as 115% or more at
midcentury and 122% or more at end-century. While these may seem like relatively small increases in precipita-
tion, and thus possible, they would represent a major and unprecedented change in precipitation regime com-
pared to the observed historical variation in precipitation (Figure 2c). During the twentieth century, for example,
the wettest 10-year period (1983–1997) had only a 18% precipitation increase. This unusual period was marked
by major floods downstream of Lakes Powell and Mead due to uncontrolled reservoir spilling and the near cata-
strophic loss of the spillways at Glen Canyon Dam [Udall, 1983].

Vano and Lettenmaier [2014] argue that the sensitivity-based approach used in our projections provides
similar estimates of future streamflow to those generated with more computationally intensive coupled-
model methods, except for some (i.e., 10%) overstatement of flow reductions at the highest levels of possi-
ble warming by 2100 (e.g., the business-as-usual SRES A2 scenario used in the CMIP3 projections and the
RCP8.5 in the CMIP5 projections). This would reduce the end of century high emissions mean flow reduc-
tions shown in Figure 5 to a still very significant 245% by 2100.

Recent studies have suggested that CO2 fertilization may increase plant water efficiency thus reducing
future evapotranspiration which could serve to mitigate our projected losses [Milly and Dunne, 2016; Swann
et al., 2016]. Both studies call into question results that show large portions of the globe drying in the
twenty-first century [e.g., Dai, 2012; Cook et al., 2014]. However, Milly and Dunne [2016] and Swann et al.
[2016] show that, despite this increase in plant water use efficiency, the Southwestern US will still dry, a
finding that is consistent with multiple global assessments showing substantial drying risk to midlatitude
areas such as the Colorado River Basin. Moreover, a recent Australian study found that higher

Figure 3. Probability density functions of Upper Colorado River Basin temperature projections for midcentury and end-century under
moderate (SRES A1B and RCP4.5) and high (SRES A2 and RCP8.5) emissions.
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evapotranspiration associated with the increased plant growth stimulated by higher CO2 outweighed any
CO2-related water-use efficiency effect, and served to reduce streamflows in semiarid regions [Ukkola et al.,
2015], a trend that must be exacerbated by the temperature-induced lengthening of the growing season.
These results suggest that plant physiological responses are likely consistent with our results, and in any
case, do not invalidate them.

5. Megadrought Risks to Flows

Megadroughts lasting decades in the Colorado River Basin have occurred in the past, with resulting substantial
flow reductions [Meko et al., 2007]. Multiple papers now suggest there is high twenty-first century risk for mega-
drought in the American Southwest and that the risk will increase as temperatures rise [Ault et al., 2014; Cook
et al., 2015; Ault et al., 2016]. In addition, current GCMs underrepresent the frequency of megadrought [Ault
et al., 2012, 2013]. These findings provide additional support for large flow reductions during at least multideca-
dal drought periods and suggest that current twenty-first century flow projections underrepresent this risk.

Significant Colorado River flow losses occurred during previous multidecadal megadroughts. During the
twelfth century, flow reductions of approximately 216% occurred during one 25-year period [Meko et al.,

Figure 4. Probability density functions of Upper Colorado River Basin temperature-induced flow reductions for midcentury and end-
century with the three temperature sensitivities (23%, 26.5%, 210%) and the two levels of emissions (Moderate: SRES A1B and RCP4.5
and High: SRES A2 and RCP8.5).
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2007]. Evidence indicates that hemispheric and Southwest temperature anomalies were significantly smaller
during past megadroughts than the rapid on-going current warming that could easily exceed 4–58C by the
end of century under business-as-usual emissions [Salzer and Kipfmueller, 2005; Mann et al., 2009; Salzer
et al., 2014] (Figure 5). Using the additivity concepts discussed above, additional warming of 18C, 28C, or 38C
beyond the historic twelfth century megadrought temperatures would have reduced the 216% flow
declines by an additional 26.5%, 213%, or 219.5% at medium temperature sensitivity. These additional
reductions would have thus turned a 216% flow decline into declines of 221.5%, 228%, or 234.5%, losses
near the middle of our projections.

There is recent strong evidence that continued warming over the next 80 years could increase the risk of
multidecadal drought [Ault et al., 2014, 2016; Cook et al., 2015]. Independent of the added drought risk due

Figure 5. Temperature-induced flow losses by model run (one per dot) with temperature increases shown on horizontal axis. For each
period (midcentury, end-century) and emissions type (moderate, high), flow losses for each model run are shown with the 3 (low 5 23%/
8C, medium 5 26.5%/8C, high 5 210%/8C) temperature sensitivities. Black dots/circles are averages/medians for each sensitivity. Precipita-
tion increases needed to counteract flow losses at right are based on 2.5 precipitation elasticity. Range for the temperature-induced losses
during 2000–2014 drought are shown in shaded brown at the top (supporting information Text S5).
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to continued warming, the risk of a 35-year precipitation-deficit drought later in this century exceeds 15%
within a 50-year period [Ault et al., 2014]. In contrast, with continued anthropogenic warming, the risk of
multidecadal megadrought in the Southwest increases to over 90% over this century if there is no increase
in mean precipitation; even if modest precipitation increases do occur, the risk will still exceed 70% [Ault
et al., 2014, 2016]. At medium warming (48C), 20–30% precipitation increases will be needed to reduce meg-
adrought risk below 50% and at high amounts of warming (>68C), it will take a "40% increase in precipita-
tion to reduce megadrought risk below 50% [Ault et al., 2016]. These changes in precipitation are huge and
unlikely, and they would still only reduce megadrought risk to below 50%.

Both the CMIP3 and CMIP5 Global Climate Models may not adequately reproduce the frequency of occur-
rence of known past decadal and multidecadal precipitation droughts [Ault et al., 2012, 2013]. In the Colora-
do River Basin empirical evidence of this problem can be found in the linked GCM-hydrology model results
from Reclamation’s projections for the basin [Brekke et al., 2014]. Approximately half of the CMIP5 models
and one-quarter of the CMIP3 models cannot simulate the 2000–2014 drought at any point in the twenty-
first century (supporting information Text S3 and Tables S1–S4). This wet bias significantly affects the mean
flows of drought-capable and nondrought capable models. At the end of the twenty-first century, the mod-
els unable to simulate the current drought are much wetter (109% of twentieth century average Lees Ferry
runoff for CMIP3, 113% for CMIP5) than the models that are able to simulate the current drought (85% of
average runoff for CMIP3, 91% CMIP5) (supporting information Tables S1–S4). These flow differences are
greater than 20%, and represent the difference between serious management challenges and significant
oversupply.

6. Risk-Based Framing of Future Runoff Projections

At present, some outputs from global climate models are ready to support reliable risk-based policy while
others are not as ready. A key novel aspect of our research is to provide more insight into where confidence
is warranted, and where it is not, with respect to projections of future climate and flow change in the Colo-
rado River Basin. In the case of the Basin, every single moderate and high emissions model simulation
agrees that temperatures will continue to rise significantly with continued emissions of greenhouse gases
to the atmosphere—this result is robust, highly certain and well-suited for informing policy choices. The
fact that observations also show substantial warming only strengthens this assertion.

On the other hand, simulated future precipitation change in the Basin is clouded with much greater uncer-
tainty due to substantial disagreement among models and a highly uncertain ability to simulate realistic
change in key phenomena such as storm-track position or decadal and longer-scale drought. Whereas cli-
mate models are in general agreement that cool season (warm season much less certain) precipitation
declines are likely in the Lower Colorado River Basin, these same models disagree when it comes to the
sign and amount of precipitation change that is likely in the Upper Basin. This is because precipitation
change in the Upper Basin will depend heavily on the exact changes in the position of cool season jet
stream and storm-tracks, two aspects of climate change that are not simulated with confidence by global
climate models [Collins et al., 2013].

Moreover, there is strong evidence that the mean positions of both the jet stream and storm-tracks are like-
ly to push poleward, expanding the area of aridity in the Colorado River Basin, but the amount of this
expansion is poorly constrained [Collins et al., 2013]. Multiple studies, including some focused on the Ameri-
can Southwest, suggest that the proximate cause of this drying, Hadley Cell expansion, is already well
underway and will continue [Seager et al., 2007; Scheff and Frierson, 2012; Feng and Fu, 2013; Norris et al.,
2016; Prein et al., 2016].

Our results regarding future changes in Colorado River flows agree with many previous studies in sugges-
ting climate change translates to flow reductions, although our work is generally not directly comparable
because we separate out high confidence temperature-related impacts from the possible effects of much
less certain and highly variable precipitation projections. However, our work, as well as this larger body of
literature, appears to be at odds with the recent Reclamation projections for the Colorado River Basin, which
are widely cited and used. Reclamation’s projections use a global climate model output that is downscaled
to drive a hydrology model. It is worth understanding why our results emphasize substantially greater risks
along with apparently greater flow losses.
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The 2011 CMIP3 climate change flow projections by Reclamation indicate a modest multimodel median
flow decline of 29% by 2060 for the river, but with a wide range of outcomes from flow increases to flow
decreases [Reclamation, 2012] (supporting information Table S1). Reclamation’s most recent CMIP5 projec-
tions show no change in mean and median basin-wide flow by 2070s [Reclamation, 2016], but also embody
a wide range of results. Compared to CMIP3, the CMIP5 results show increased precipitation, especially in
the northern parts of the basin including Northeast Utah, Northwest Colorado’s Yampa River and the Green
River in Wyoming [Brekke et al., 2014; Ayers et al., 2016] (supporting information Tables S1 and S3). The
increased precipitation in the CMIP5 model runs compared to CMIP3 can be attributed to more southerly
storm tracks in CMIP5 that occur in late spring [Brekke et al., 2014].

Another issue arises in both the CMIP3 and CMIP5 data sets when GCM precipitation is adjusted by the
downscaling techniques necessary for off-line hydrology models. The first step in Reclamation’s downscal-
ing is a bias correction step. This step can add approximately 5% more precipitation to the raw GCM precip-
itation, and this increase appears to not have a physical basis [Reclamation, 2013; Brekke et al., 2013]. The
final downscaling step, spatial downscaling, also increases GCM precipitation, although there is at least a
plausible physical explanation for some of the increase: higher elevations in the Rockies receive large
amounts of precipitation, but these elevations are not properly modeled by the GCMs. In one study of the
CMIP5 data set after downscaling, dry and average models show precipitation increases of approximately
1"5% from the raw GCM output, but the wettest models show 1"10% increases, doubling future precipi-
tation increases from 110% to 120% [Lukas et al., 2014]. This extra precipitation is manifested in a number
of hydrology model runs that project huge and implausible flow increases in some years that are 150% of
the highest known flows in the twentieth century (supporting information Text S4, Figures S2, and S3). The
downscaling wetness problem has been identified, but has not been not resolved [Lukas et al., 2014]. Recla-
mation acknowledges that the newer CMIP5 projections have not been determined to be better or more
reliable [Brekke et al., 2014]. It is noteworthy that internally consistent GCM-only Southwest runoff projec-
tions almost uniformly produce significant declines in both CMIP3 and CMIP5 runs [Milly et al., 2005; Seager
et al., 2007, 2012; Koirala et al., 2014; Milly and Dunne, 2016].

Our results are generally comparable to Reclamation’s most recent results when considering the full range
of our analysis when both precipitation and temperatures are included. However, our focus and emphasis is
on the large near-certain temperature-induced flow declines with a separate analysis of precipitation. Recla-
mation, by contrast, has a focused on climate multimodel-ensemble median declines, including medians
calculated across emission scenarios [Reclamation, 2013, 2012]. Decision makers often treat these median
outcomes as a proxy for risk despite the fact that the median obscures the wide range of results and lumps
wet and dry, warm and hot, large and small emission increases and, most critically, near certain temperature
increases and very uncertain precipitation changes.

We assert that the large precipitation increases necessary to offset substantial temperature-induced flow
decreases appear unlikely to occur for a number of reasons. These reasons include the potential for storm
tracks to go north of the basin due to Hadley Cell expansion, the high potential for megadrought to
increase evaporation while reducing precipitation and runoff for extended periods, the large size of the
needed precipitation increases, especially when compared to decadal historical increases, the consistent
identification by global assessments of the Southwest as an area likely to dry, and finally the lack of any
trend over the last century or last 16 years (Figure 2c). Hence, we choose to focus on highly likely
temperature-induced declines with separate analysis of the precipitation needed to offset these declines.

7. Policy Implications and Solutions

The climate science take-home messages for Colorado River managers are thus: (1) there is little doubt (i.e.,
high confidence) that temperatures will continue to increase as long as the emissions of greenhouse gases
to the atmosphere continue; (2) there is also high confidence that continued temperature increases will
cause river flows to decline, ranging from 211% to as much as 255% by end of century under moderate to
high emissions (Figures 4 and 5); (3) there is only low confidence associated with the possibility of storms
and precipitation in the Upper Basin increasing enough to even partially offset the temperature-driven
declines in river flows; (4) the risk of multidecadal megadrought in the Basin is significant even in the
absence of continued anthropogenic climate change, and this risk rises substantially with continued global
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warming; (5) the likelihood of drought and megadrought means that there will likely be decades-long peri-
ods with anomalously low runoff even if there is an increase in precipitation relative to the historical mean
during some other periods due to anthropogenic climate change.

Temperature-driven threats to the flows of the Colorado are thus large and real. The only way to curb sub-
stantial risk of long term mean declines in Colorado River flow is thus to work toward aggressive reductions
in the emissions of greenhouse gases into the atmosphere. Our work shows that modest (e.g., RCP4.5)
reductions in greenhouse gas emissions, while having better outcomes than the business-as-usual future
(e.g., RCP8.5), still imply large Colorado River flow losses.

The record warm nature of the on-going Colorado River drought indicates that this drought is not just a nat-
ural drought, and our work demonstrates that flows are unlikely to return to the twentieth century averages
if we only wait. Unusually wet periods like the 1920s and 1990s will still continue to occur, but they will co-
occur with higher temperatures that will increase water demand from plants, soil, snow, and humans.

Climate models and theory suggest that flow reductions would be more severe in the Southern portions of
the Upper Colorado Basin affecting tributaries such as the San Juan, Dolores, and Gunnison more severely,
with smaller impacts to more northerly tributaries such as the Yampa and Green [Ayers et al., 2016]. Such
spatial distribution would provide additional water management challenges in that the more southerly
basins have in general more people, infrastructure, and uses. Such a distribution would create new localized
water supply shortages in addition to the overall basin-wide issues.

Other known threats to streamflows include the potential large scale loss of conifers [Breshears et al., 2005;
Adams et al., 2009; Allen et al., 2010, 2015], and the impacts of dust on snow [Painter et al., 2010; Deems
et al., 2013]. These factors along with the observed and projected temperature-induced Colorado River flow
declines, the inability of many linked climate-hydrology models to simulate persistent droughts, and the
increasing likelihood of hot drought and megadrought, all imply that future Colorado River water supply
risk is high. It is imperative that decision-makers begin to consider seriously the policy implications of
potential large-scale future flow declines. Stable twentieth century Colorado River flow regimes may not
reoccur for many centuries—the time scale of climate system readjustment to the complete cessation of
greenhouse gas emissions [Solomon et al., 2009; Collins et al., 2013].

The Colorado River declines do not stand alone as the only warming-related threat to Southwestern water
supplies. The Rio Grande also has a grim prognosis [Reclamation, 2013; Elias et al., 2015]. The drought in
California has garnered national attention, and multiple studies have strongly implicated increasing temper-
atures as a contributor to these woes [Griffin and Anchukaitis, 2014; Belmecheri et al., 2016; Diffenbaugh
et al., 2015; Mann and Gleick, 2015; Seager et al., 2015a]. Southern California is particularly at risk, with a criti-
cal economy and a very large population, all coupled with a large reliance on both climate-threatened in-
state, as well as Colorado River, water.

Adjusting to the new reality of rapid climate change will not be an easy or fast task; water management and
water policy change slowly. The Colorado River is managed by a complex set of agreements, interstate com-
pacts approved by Congress, international agreements, legislation, and court decrees set in place over the last
100 years [Verburg, 2011]. Most agreements were derived from twentieth century state-based negotiations
with win/lose policy prescriptions that minimized basin-wide considerations of economic prosperity and
potential harm [Adler, 2008]. None expressly includes climate change risk management, nor the provision for
flow reductions that will be relentless on decadal timescales. New agreements often take years to put in place
[Department of Interior, 2007]. The recently proposed structural deficit solution [Central Arizona Project, 2016],
while important and laudable for the short term, will not solve the problem of large scale flow losses. With
reduced water supplies, much will have to change in these agreements to address equity, economics, and
social concerns on regional, state, basin-wide, and even national levels. Climate change threats to western
water supplies are very real, and should prompt great concern and urgency among both water managers and
the citizens of the Southwest.
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