
Late Quaternary subsidence of Santa Catalina Island from submerged marine terraces

 Geological Society of America Bulletin, v. 1XX, no. XX/XX 1

castillo-B31738.1  2nd pages / 1 of 22

Late Quaternary subsidence of Santa Catalina Island, California 
Continental Borderland, demonstrated by seismic-reflection data 

and fossil assemblages from submerged marine terraces

Chris M. Castillo1,†, Simon L. Klemperer1,§, James C. Ingle Jr.1,§, Charles L. Powell II2,§, Mark R. Legg3,§, and 
Robert D. Francis4,§

1Department of Geophysics, Stanford University, Mitchell Building, 397 Panama Mall, Stanford, California 94305, USA
2 U.S. Geological Survey, Western Region Geology and Geophysics Science Center, 345 Middlefield Road, Menlo Park, California 
94025, USA

3Legg Geophysical, 16541 Gothard Street, #107, Huntington Beach, California 92647, USA
4 Department of Geological Sciences, California State University–Long Beach, 1250 Bellflower Boulevard, Long Beach, California 
90840, USA

ABSTRACT

Submerged paleoshorelines and terraces 
surrounding Santa Catalina Island and the 
Pilgrim/Kidney Banks in the California 
Continental Borderland demonstrate late 
Quaternary tectonic subsidence, in contrast 
to the other islands of the California Conti-
nental Borderland that are experiencing tec-
tonic uplift. We used high-resolution seismic-
reflection profiles to map a terrace package 
containing 16 successive parasequences sur-
rounding Santa Catalina Island, preserved at 
depths from 30 to 470 m below modern mean 
sea level. The Pilgrim/Kidney Banks are sur-
rounded by a terrace package containing 13 
successive parasequences preserved at 90–
310 m depth. The presence of marine terrace 
(beach) deposits at >400 m depth, far below 
the lowest estimates of Quaternary lowstand 
sea level (90–130 m), requires significant tec-
tonic subsidence. Within each terrace, we 
identified the transgressive surface separat-
ing subaerial deltaic and shallow-marine de-
posits originating during sea-level lowstand 
from overlying subaqueous deltaic deposits 
emplaced after the lowstand. Remotely oper-
ated vehicle samples of sediment recovered 
from submerged terrace deposits offshore 
Santa Catalina Island contain  faunal assem-
blages typical of submerged insular terraces 
in southern California. The distribution of 
equivalent extant mollusks and benthic 
forami nif era indicates deposition in water 

depths between 25 and 45  m. Extinct taxa 
present within the samples provide coarse 
(Late Pleistocene) age constraints on Santa 
Catalina’s deepest subsided terraces. We 
identified the transgressive surface corre-
sponding to the Last Glacial Maximum and 
its paleo–sea-level marker at modern depths 
between –85 and –95  m surrounding Santa 
Catalina Island. Terraces surrounding Santa 
Catalina Island and Pilgrim Banks were cor-
related to lowstands and interstadials on a 
glacio-isostatic–adjusted, ice-volume–equiv-
alent sea-level curve in order to evaluate sub-
sidence rates. Santa Catalina Island has been 
tilting north and subsiding together with its 
surrounding platform at 0.08–0.27 mm/yr 
since at least 1.15  Ma (marine oxygen iso-
tope stage [MIS] 34). Pilgrim Banks has been 
subsiding at 0.3 mm/yr for at least 0.35 m.y. 
but must have subsided no faster than 0.12 
mm/yr between 0.35 and 1.15 Ma. We inter-
pret the subsidence and 1.5° northward tilt of 
Santa Catalina Island as showing continued, 
although reduced, activity of the Catalina 
fault system simultaneous with increasing ac-
tivity on the southern San Pedro Basin–San 
Diego Trough fault zone.

INTRODUCTION

At the coastline of every continent and  island, 
waves and currents distribute sediment and cre-
ate a detailed stratigraphic record of changes 
in sea level and vertical tectonic defor ma tion. 
Mapping coastal vertical motion is necessary 
for under standing and adapting to changing sea 
level, and it provides valuable insight into the 
mechanics of anastamosing faults that transect 

the offshore portion of the North American– 
Pacific plate boundary (Niemi et  al., 2008). 
 Marine terraces, wave-planed erosional plat-
forms, and their adjacent constructional sedi-
mentary platforms have been used in the Cali-
fornia Continental Borderland to determine 
Quaternary uplift and subsidence rates and 
ultimately constrain restraining and releasing 
linkages along strike-slip fault zones (Muhs 
et al., 1992; Legg et al., 2007; Chaytor et al., 
2008), and to constrain rates of convergence 
and growth of the Channel Islands and the 
Western Transverse Ranges (Rockwell et  al., 
1988; Pinter et  al., 2001). Uplifted fossilifer-
ous marine terraces on islands in the California 
Continental Borderland are typically used to 
constrain vertical motion following the meth-
odology of Lajoie (1986), who correlated the 
back-edges (shoreline  angles) of radiometrically 
dated terraces at known elevations to sea-level 
highstands, assuming linear uplift rates (Muhs, 
1982; Muhs et al., 1992). Uplift rates on main-
land terraces at the Palos Verdes Peninsula, San 
Joaquin Hills, and most of the Channel Islands 
(Fig. 1) have been constrained using dated 
emergent terraces (Bryant, 1987; Grant et  al., 
1999). Vertical motion estimates for the Califor-
nia Continental Borderland are based mostly on 
uplifted terraces, with relatively few quantitative 
investigations of subsided terraces (Pinter et al., 
2003; Niemi et al., 2008; Chaytor et al., 2008).

The use of submerged terraces in constrain-
ing vertical motion is well established (e.g., 
Steinen et  al., 1973; Chiocci and Orlando, 
1996;  Rohling et  al., 1998; Chaytor et  al., 
2008;  Passaro et  al., 2011). These investiga-
tions typically combine bathymetry and high-
resolution seismic-reflection images and require 
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knowledge of past sea level and recognition of 
paleo–sea-level markers. However, the paleo–
sea-level markers that are most commonly used, 
the shoreline angle or in situ fossils of known 
depths, are only accurate to within a few meters 
at best, and they are difficult to identify in the 
marine setting (Jardine, 1981). Recent quantita-
tive classification of a globally distributed clino-
form data set provides a criterion for discrimi-
nation between subaerial deltas (i.e., beaches) 
deposited during lowstands and subaqueous 
deltas deposited during and following transgres-
sion, and this allows more precise determination 
of paleo–sea-level markers using seismic stra-
tigraphy (Patruno et  al., 2015). Anacapa and 
Santa Cruz and Santa Rosa Islands, for exam-
ple, host emergent terraces from the last inter-
glacial, but bathymetric and seismic data around 
the islands also reveal submerged terraces that 

contain a more extensive record of deformation, 
back to ca. 0.5  Ma (Pinter et  al., 2003). The 
combination of offshore and onshore data pro-
vides a more robust estimate of the rate of con-
vergence and growth along the Channel  Islands 
than uplifted terraces alone.

The vertical motion of the California Conti-
nental Borderland has been described as yo-yo 
tectonics, due to its tortuous vertical motion his-
tory (Chaytor et al., 2008). While many of the 
offshore islands of the California Continental 
Borderland have experienced uplift during the 
Quaternary, several submerged and submerg-
ing islands and banks stand in contrast, par-
ticularly Santa Catalina Island (this paper) and 
Pilgrim/Kidney Banks (this paper; Chaytor 
et al., 2008). Whether Santa Catalina Island has 
experienced Quaternary uplift or subsidence has 
long been debated (e.g., Lawson, 1894; Legg 

et al., 2004b; Muhs et al., 2014). Most neigh-
boring islands clearly bear geomorphic features 
related to their emergence from the Pacific 
Ocean, for example, the emergent terraces on 
San Clemente Island (Muhs and Szabo, 1982). 
In contrast, Santa Catalina’s rugged landscape 
contains only sparse and contested evidence of 
Quaternary uplift (Smith, 1933; Shepard et al., 
1939; Loop, 1973; Samaras and Gellura, 1979; 
Schumann et al., 2012). Miocene–Pliocene ma-
rine fossils at the Ben Weston Overlook (Fig. 2, 
red dot) constrain timing of Santa Catalina’s 
most recent uplift to no earlier than the Plio-
cene (Schumann et  al., 2012), and certainly 
following the middle Miocene exhumation of 
the Catalina Schist from beneath the Peninsu-
lar Ranges Batholith (Woodford, 1925; Platt, 
1976; Stuart, 1979; Grove et al., 2008). Santa 
Catalina’s most recent uplift occurred along a 
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restraining segment of the Santa Cruz–Catalina 
Ridge fault zone where it diverges from the San 
Diego Trough fault and along the Santa Cruz–
Catalina Ridge fault (Fig. 1; Legg et al., 2004a, 
2007, 2015).

Santa Catalina is unique among southern 
California’s eight major islands in that no clear 
wave-cut platforms dating from its emergence 
are currently visible above sea level. To date, no 
enduring evidence of a Quaternary terrace on-
shore Santa Catalina Island has been produced, 
and all previously reported marine terraces have 

been revisited and either invalidated or shown to 
be pre-Quaternary (Schumann et al., 2012). In 
contrast to islands that have experienced uplift 
during the late Quaternary Period, Santa Cata-
lina is surrounded by a stair-stepped series of 
flat to very gently dipping submarine surfaces, 
extending down to 410 m deeper than modern 
sea level, that have been interpreted as sub-
merged marine terraces (Emery, 1958; Davis, 
2004). Pilgrim Banks has a similar succession 
of bathymetric terraces that also indicate sub-
sidence (Fig. 3; Chaytor et al., 2008). Here, we 

present fossil and seismic stratigraphic evidence 
that the terraces surrounding Santa Catalina 
Island and the Pilgrim/Kidney Banks are sub-
merged delta-scale clinoforms deposited domi-
nantly during regression and at the beginning of 
transgression. We used seismic-reflection pro-
files to interpret paleo–sea level during forma-
tion of these parasequences, and we correlated 
these features with an ice-volume–equivalent 
eustatic sea-level curve to establish a likely 
chronology for the subsidence of Santa Catalina 
Island. We used the sequence-stratigraphic rela-
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tionships to show that the terraces surrounding 
Santa Catalina and the Pilgrim/Kidney Banks 
require successive sea-level lowstands on a sub-
siding platform.

GEOLOGIC SETTING

The Inner Borderland province of the Cali-
fornia Continental Borderland is an area of thin 
continental crust formed during Miocene rifting 
while the subducted Farallon plate was rapidly 
exhumed from 40 to 20 km depth (Fig. 1; Legg, 
1991; Crouch and Suppe, 1993). The Inner 
Border land is bounded on the north by the West-
ern Transverse Ranges at the Channel Islands 
thrust fault, on the west by the Outer Borderland, 
and on the east by the Peninsular Ranges (How-
ell and Vedder, 1981; Shaw and Suppe, 1994). 
To the south, the Inner Borderland terrane con-
tinues as far south as Enseñada Trough, offshore 
Mexico (Legg, 1991). Subduction of the Faral-
lon plate under southern California ended when 
the East Pacific Rise contacted North America 
(Atwater, 1970), causing the initiation of the 
Inner Borderland Rift, an episode of oblique 
transtension accompanied by widespread vol-
canism. During rifting, the Western Transverse 
Ranges rotated up to 110° clockwise away from 
the Peninsular Ranges, separating Jurassic base-
ment and Late Cretaceous to Paleo gene forearc 
strata from the western margin of the Peninsular 

Ranges Batholith, thereby exposing the Inner 
Borderland terrane (Luyendyk et  al., 1985). 
The Inner Borderland is currently translating 
northwest relative to North America along a 
system of anastamosing strike-slip faults that 
are part of the greater North American–Pacific 
plate boundary (Fig. 1; Legg et al., 2015). The 
northern Inner Borderland is colliding with and 
being thrust beneath the rapidly uplifting West-
ern Transverse Ranges block along the Chan-
nel Islands thrust (Shaw and Suppe, 1994) and 
is experiencing northeast-directed shortening 
(Hauksson and Jones, 1988).

Santa Catalina Island is an exposed ridge 
crest running parallel to the coast of southern 
California (Figs. 1 and 2), and it is composed 
primarily of Miocene calc-alkaline volcanic and 
intrusive rocks, and the Cretaceous Catalina 
Schist (Grove et al., 2008; Vedder et al., 1979). 
The northern portion of the island is the type lo-
cality for the Catalina Schist, which is inferred 
from boreholes, outcrops, and seismic profiles 
to be the basement of the entire Inner Border-
land province (Crouch and Suppe, 1993). The 
southeastern section of the island is composed 
of Miocene igneous rocks, including the 19 Ma 
Catalina pluton (Vedder et al., 1979) and several 
Miocene calc-alkaline dike swarms and flows, 
in some cases interbedded with marine sedi-
ments (Legg et al., 2004b). Small exposures of 
Cretaceous–Paleogene marine and nonmarine 

sediments outcrop on the easternmost portion of 
the island, and Miocene diatomaceous sediments 
outcrop on the western portion (Vedder et  al., 
1979). Miocene sedimentary and vol cani clastic 
rocks, including the San Onofre Breccia, form 
less than 5% of the subaerial geology of Santa 
Catalina, but they also form part of the Santa 
Cruz–Catalina Ridge, which extends north of 
the island (Vedder et al., 1986). Pilgrim Banks 
is a bathymetric high of the larger Kidney Bank 
platform, and it is composed of Miocene meta-
morphic and igneous rocks; the western margin 
of Kidney Bank is the contact between the In-
ner Borderland and Outer Borderland terranes 
(Figs. 1 and 2; Junger, 1979; Vedder et al., 
1979;  Howell et  al., 1987). Both the Pilgrim/
Kidney Banks and Santa Catalina are mantled 
by sediments exhibiting terraced morphology 
that are distinct from the sediments in the Santa 
Monica, San Pedro, Santa Cruz, and Catalina 
Basins (Fig. 1; Emery, 1958; Legg et al., 2004b; 
Chaytor et al., 2008; Francis and Legg, 2010).

METHODS

Seismic Data Acquisition, Processing, 
and Interpretation

We used multiple generations of seismic 
data, including 1970s U.S. Geological Survey 
(USGS) boomer and air-gun single-channel 
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data, 2008–2009 California State University–
Long Beach (CSULB) 16 channel sparker 
data, and 2014 and 2016 Stanford University 
36 channel boomer data (Table 1) to interpret 
sequence stratigraphy, the extent of sedimenta-
tion, and bedrock geometry. Stanford seismic 
data were acquired using a Subsea SystemsTM 
1.5 kJ triple-plate boomer and a streamer with 
3.125 m group interval for channels 1–16 and 
a 6.25  m group interval for channels 17–36. 
Navigation data were collected using a Trimble 
GeoXHTM differential global positioning sys-
tem and postprocessed before merging with 
seismic data. Statics were corrected by picking 
the first arrival on every trace in receiver gathers 
and smoothing with an 11 trace boxcar filter. 
 Using water sound-velocity profiles collected 
by E/V Nautilus in 2015, data were prestack 
time migrated (PSTM) in OpenCPSTM, yield-
ing an effective vertical resolution of ~0.5 m. 
Acoustic wave speeds in submerged terrace 
sediments are within 50 m/s of the acoustic 
wave speed in water, and all depth conversion 
was done at 1485 m/s. We applied corrections 
for tides, streamer, and source depth, and we 
show depths relative to mean sea level. In addi-
tion, we used a digital elevation model (DEM) 
at 2 m lateral resolution produced by California 
State University–Monterey Bay (CSUMB) 

to generate slope-enhanced shaded-relief 
raster images (Figs. 2 and 3) that we imported 
into the IHS Kingdom SuiteTM to merge the 
 bathymetry and seismic data.

Sequence Stratigraphy and Subaerial 
versus Subaqueous Deltas

Investigating tectonic motion using marine 
terraces requires accurate determination of 
paleo –sea level from paleoshoreline indicators 
(e.g., Pinter et al., 2003; Chaytor et al., 2008; 
Williams et al., 2018). Uplift rates for emergent 
marine terraces are calculated by dividing the 
total vertical motion (the difference between the 
elevation of the terrace back-edge or “shoreline 
angle” and sea level at the time of terrace forma-
tion) by the age of the terrace (Lajoie, 1986). 
Successive emergent marine terraces are cor-
related with episodic sea-level highstands to 
yield long-term (up to 1 m.y.) Quaternary uplift 
rates. Similarly, submerged strandlines reflect 
episodic sea-level lowstands superimposed on 
a steadily subsiding coastline (Lajoie et  al., 
1991). However, terrace back-edges in sub-
merged coastal deposits are overlain by coarse 
landslide-derived sediments, termed boulder 
wedges, and are difficult to image seismically 
(Pomar and Tropeano, 2001). Terrace back-

edges only provide a coarse approximation 
of sea level, and many of the world’s coasts 
have modern shoreline angles that are up to a 
few meters above or below the high-tide mark 
(Pedoja et  al., 2011). An alternative paleo–
sea-level marker, the subaerial delta clinoform 
rollover, is defined in cross section as the point 
of maximum curvature upslope from the inflec-
tion point (e.g., Figs. 4B and 4D). Subaqueous 
deltaic clinoform rollovers do not approximate 
paleo –sea level (Patruno et  al., 2015). Clino-
form rollovers are observed at sea level on many 
of the world’s modern and relict subaerial del-
tas at the topset of delta-scale clinoforms. The 
rollover results from decreasing bed shear stress 
conditions with depth, allowing foresets to be 
stable at steeper dips in deep water than in the 
intertidal zone (Pirmez et  al., 1998; Keneally, 
2016). However, clinoform rollovers on tectoni-
cally stable modern subaqueous deltas occur at 
depths up to 60 m and thus are not indicative of 
sea-level position. Delta-scale clinoforms that 
have been radiometrically dated reveal outer 
foreset beds much younger than their corre-
sponding lowstand (Kuehl et al., 1986; Alexan-
der et  al., 1991) and suggest that the steepest 
and outermost foreset beds on many shelves are 
deposited after the lowstand and during trans-
gression or even in highstand conditions.

TABLE 1. SEISMIC AND BATHYMETRIC DATA FOR SANTA CATALINA ISLAND AND SURROUNDING AREAS, SOUTHERN CALIFORNIA, USED IN THIS STUDY

Cruise Figs. Platform Equipment Year Source
Bathymetry
AT15-53 3 Atlantis SeaBeam 2112 2009 NCEI
AT18-11 2 Atlantis Kongsberg EM122 2011 NCEI
AT26-06 3 Atlantis Kongsberg EM122 2013 NCEI
AT26-07 3 Atlantis Kongsberg EM122 2007 NCEI
BOLT02MV 2 Melville Kongsberg EM120 2008 NCEI
Chaytor et al. (2008) 3 R/V Velero IV SimradSM2000 2003 USGS
CNTL04RR 3 Roger Revelle SeaBeam2100 2003 CSUMB
CSUMB Catalina 2 R/V VenTresca Reson’s SeaBat 7111, SeaBat 7125 2008 CSUMB
CSUMB Farnsworth 2 R/V VenTresca Reson 8101 2004 CSUMB
CSUMB SBI 3 R/V VenTresca Reson 8101 2001, 2006 CSUMB
E-1-04-SC 3 Maurice Ewing Simrad EM1002 2004 NCEI
EX1101 3 Okeanos Explorer Simrad EM302 2011 NCEI
MV1010 2,3 Melville Kongsberg EM122 2010 NCEI
MV1010 3 Melville Kongsberg EM122 2010 NCEI
MV1214 2 Melville Kongsberg EM122 2012 NCEI
MV1214 3 Melville Kongsberg EM122 2012 NCEI
Nautilus NA-067 2 Nautilus Kongsberg EM302 2015 OET
Nautilus NA-074 3 Nautilus Kongsberg EM302 2016 OET
Nautilus NA-075 3 Nautilus Kongsberg EM302 2016 OET
Nautilus NA-078 2,3 Nautilus Kongsberg EM302 2016 OET
NBP0207 3 Nathaniel B. Palmer Kongsberg EM120 2002 NCEI
OXMZ01MV 3 Melville SeaBeam2000 1999 NCEI
REVT01RR 2 Roger Revelle SeaBeam2100 1996 NCEI
WEST15MV 2 Melville SeaBeam2000 1995 NCEI

Seismic
CSULB 2008,2009 2 Sea Watch, Yellowfin 2 kJ sparker, 16 channel 2008, 2009 CSULB
Stanford SCITTLES 4,5,6 Jab, Yellowfin 1.5 kJ boomer, 36 channel 2014, 2016 Stanford
USGS Kelez (K-2-73-SC) 2 Kelez Air gun, uniboom, single channel 1973 NCEI
USGS Lee (L-4-90-SC) 2,3 R/V S.P. Lee Air gun, multichannel 1990 NCEI
USGS Oil City (O-1-69-SC) 2 M/V Oil City 30–100 kJ sparker, single channel 1969 NCEI
WesternGeco (W-30-81-SC) 2 Unspecified Air gun, 96 channel 1982 NCEI
WesternGeco (W-5-82-SC) 2 Unspecified Air gun, 120 channel 1982 NCEI

Note: NCEI—National Center for Environmental Information (https:// www.ncei .noaa .gov/); USGS—United States Geological Survey (National Archive of Marine Seismic 
Surveys, https:// walrus.wr.usgs.gov /NAMSS/; CSUMB—California State University, Monterey Bay (Seafloor Mapping Lab, http:// seafloor.csumb.edu/); OET—Ocean 
Exploration Trust; CSULB—California State University, Long Beach (www.oceanexplorationtrust .org /data -request).
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Recent quantitative classification of fore-
sets in a globally distributed data set (Patruno 
et al., 2015) constrained the dips of clinoforms, 
allowing discrimination between low-dip sub-
aerial delta foresets (dip < 10°) deposited at 
lowstands, and steep subaqueous delta foresets 
deposited during and following transgression 
(dips up to 27°). Using these criteria, we dis-
tinguished low-dip subaerial deltas, for which 
the rollover does indicate sea-level position, 
from outer-shelf deposits with dips too steep 
for subaerial delta deposition (Fig. 4), which 
do not indicate sea-level position. The transi-
tion between subaerial and subaqueous deltas 
approximately marks the transgressive surface 
(Hunt and Tucker, 1992), which we identified 
on seismic data (Fig. 4, yellow lines) as the 
contact between low-curvature reflectors with 
clearly identifiable rollovers and overlying re-
flections with dips indicative of subaqueous 
deltaic deposition.

We then calculated subsidence following 
the methodology of Lajoie (1986), with two 
notable differences: We used the rollover point 
of the uppermost subaerial delta deposit instead 
of shoreline angles, and we tied to sea-level 
lowstands or low interstadials (except for T1 
near Santa Catalina Island, discussed below) 
adjusted to the lowstand depth of Muhs et al. 
(2014) (cf. Lajoie et  al., 1991). The use of 
shoreline angles is precluded in this deposi-
tional system because any concavity developed 
at lowstand is destroyed during transgression. 
Modern shoreline angles observable at any 
rocky California beach can be found at between 
0 and 5 m above sea level and more accurately 
represent maximum storm surge rather than 
mean sea level.

Bottom Sampling and Recovery of 
Macrofossils and Microfossils

We participated in three remotely operated 
vehicle (ROV) investigations offshore Santa 
Catalina Island during 2015 and 2016 as part 
of E/V Nautilus cruises NA-067 and NA-075 
(Bell et  al., 2016). Dives utilized tandem 
ROVs, Hercules and Argus, and were guided 
via telepresence from Stanford University and 
Legg Geophysical. During E/V Nautilus dive 
NA-067-H1459, the ROVs were piloted upslope 
in the submarine canyon north of Avalon be-
tween depths of 350 and 230 m (Fig. 2, inset 2), 
allowing sampling and detailed descriptions of 
the lithofacies that comprise the sedimentary 
prism surrounding Santa Catalina Island. Dive 
NA067-H1560 started at 1100 m, ascended the 
Catalina Escarpment, and terminated at 130 m 
depth on terrace surfaces west of the NW tip 
of the island. Dive NA-075-H1556 targeted the 
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Last Glacial Maximum (LGM) terrace surface 
between water depths of 125 and 95 m (Fig. 2, 
inset 2). The LGM transgressive surface is pres-
ent in outcrop in the two submarine canyons, 
which have significantly incised the LGM ter-
race, with the best exposure of LGM strata oc-
curring near Long Point (dive NA075-H1556). 
We used a combination of multi channel seis-
mic (MCS) and chirp subbottom profiles col-
lected by Stanford University in 2014 and 
2015 (Fig.  2, inset 2) to visually identify and 
navigate to key sedimentary horizons exposed 
on the walls of the submarine canyon. Poorly 
consolidated sediment on the canyon walls was 
collected via suction hose. The number of ROV 
samples we could collect was limited by storage 
capacity on the ROV.

Cores and Van Veen samples from Stan-
ford cruises in 2014 and 2015 (white dots on 
Fig. 2), as well as Nautilus ROV grab samples 
(numbered 001-010, 001-114, 001-115; white 
dots along red ROV tracks in Fig. 2), were air-
dried, sieved, and cleaned for paleontological 
analysis. We cleaned and scrubbed rocks under 
tap water and picked identifiable macro fossil 
remains (Table 2). Samples of soft sediment 
were washed with water using a 200 mesh Tyler 
screen (0.074 mm openings) to recover micro-

fossils. Washed residues were then oven-dried. 
Dried material from each sample was scat-
tered on a gridded metal picking tray and ex-
amined under a binocular microscope at 126× 
and 250× magnification, and representative 
specimens of benthic and planktonic forami-
nifera were picked and mounted on micro-
faunal slides. Specimens were then identified, 
and counts were made of species abundances 
in each sample. The relative abundance of each 
taxon identified was calculated as a percentage 
of the total number of benthic or planktonic 
specimens counted in each sample; perc entages 
were not calculated when the total number 
of specimens in a sample was 50 or less. The 
number of benthic specimens counted in each 
sample ranged from 58 to 401 (Table 3), and 
counts of planktonic specimens ranged from 19 
to 312 (Table 4).

Shell material from four bivalve species 
(samples NA075-114 and NA075-115; Fig. 
4B; Table 5) was selected for radiocarbon dat-
ing at the Center for Accelerator Mass Spec-
trometry (CAMS) at the Lawrence Livermore 
National Laboratory (Davis et al., 1990). Prior 
to analysis, shells were sonicated in methanol 
and dried. CALIB 7.10 (Stuiver and Reimer, 
1993; Stuiver et al., 2005) was used to correct 

the uncalibrated radiocarbon ages using the 
MARINE13 calibration curve (Reimer et  al., 
2013). A reservoir correction (ΔR) of 220  ± 
40 yr (Ingram and Southon, 1996) was ap-
plied to calibrate ages for all samples as listed 
in Table 5.

SEISMOSTRATIGRAPHY

Our seismic data show that the sediment 
package surrounding Santa Catalina, described 
by Francis et al. (2018), and the sediment pack-
age we identified around the Pilgrim/Kidney 
Banks are composed of multiple stratigraphic 
sequences (Figs. 5 and 6), some of which have 
bathymetric expression (Figs. 2 and 3). Each se-
quence, or terrace, contains three distinct sedi-
mentary units. The most proximal are foresets at 
relatively low dip (<5°) that have truncated tops, 
and downlapping bottomsets. These are overlain 
by low-dip foresets with clinoform rollovers ob-
servable at their tops (Figs. 4B and 4D). The 
most distal portion consists of steeply dipping 
reflectors (up to 25°), the tops of which are at 
the same elevation as the tops of the underlying 
low-dip reflections. The unconformity between 
low-dip and high-dip clinoforms (white and 
gray shaded areas in Figs. 5 and 6) is the trans-

TABLE 2. MACROFOSSILS IDENTIFIED IN REMOTELY OPERATED VEHICLE SAMPLES FROM DIVES NA-067-001−010 AND NA-067-020–021

001 002 003 004 005 006 007 008 009 010 020-021 114 115
Mollusca x x x x

Bivalvia x
Acila castrensis (Hinds, 1843) x
Cardiomya cf. C. planetica (Dall, 1908) x x
Chlamys hastata (Sowerby, 1842) x
Cyclocardia occidentalis (Conrad, 1855) x x
Euvola cf. E. stearnsii (Dall, 1897) x x x x
Glans carpenteri (Lamy, 1922) x
Leporimetis obesa (Deshayes, 1855) x
Lucinisca annulata (Carpenter, 1864) x
Macoma sp. x x
Mytilidus sp. x
Nuculana cf. N. hamata (Carpenter, 1864) x
Nutricola cf. N. ovalis (Dall, 1901) x x
Nutricola sp. x x
Parvilucina cf. P. approximata (Dall, 1901) x
Tellina bodegensis Hinds, 1845 x x x
Thyasira flexuosa (Montagu, 1803) x

Gastropoda x x
Calliostoma sp. x
Homalopoma sp. x
Mitrella sp. x
Pomaulax gibberosa (Dillwyn, 1817) x
Puncturella cooperi Carpenter, 1864 x
Solariella peramabilis Carpenter, 1864 x
Turritella cooperi (Carpenter, 1864) x

Scaphopoda
Gadila cf. G. aberrans (Whiteaves, 1887) x x

Echinodermata
Echinoidea

Strongylocentrotus sp. x  
Cnidaria

Anthozoa x
Caryophyllia sp. x
Desmophyllum dianthus (Esper, 1794) x
Lophelia pertusa (Durham, 1947) x
Paracythus verrill Verill, 1869 x  
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gressive surface. This interpretation is supported 
by the lithology (Supplementary Table S11), fos-
sil content (Tables 2, 3, and 4), acoustic charac-
teristics, the dip of their foresets (Fig. 4), and the 
carbon ages (Table 5) of fossils recovered from 
above and below the transgressive surface. The 

elevations of the tops of the subaqueous delta 
foresets are set by the preexisting bathymetric 
relief of the underlying abandoned subaerial 
delta rollover, which provides shelter from bot-
tom currents and hence lower shear stress on the 
slope than on the tread of the terrace (Mitchell 
et al., 2012). Although we counted 16 sequences 
near Santa Catalina Island (Fig. 5, profile 2202, 
where open circles mark shoreward limit of 
each sequence), there are only eight terraces 
with varying bathymetric expression surround-
ing the island (Figs. 2 and 5, terrace rollovers 
numbered T1–T8), and even fewer along the 
Catalina Escarpment.

The outer edges of terrace surfaces (Fig. 2) 
are underlain by steeply dipping foresets that 
are often acoustically transparent or contain 
only weak internal reflectivity (Fig. 4). Foresets 
range in dip from 5° to 27° and often occur in 
a lozenge-shaped package overlain by a thin 
cover of muds and bioclastic carbonates (Figs. 
7B and 7D). The steeper foresets (>15°) are 
steeper than any known subaerial delta foresets 
anywhere on Earth (Patruno et al., 2015), and 
we interpret them as subaqueous deltas depos-
ited during transgression and even in highstand 
conditions. Packages of steeply dipping fore-
sets buttress against clinoforms of lower dip 
that have truncated toplaps above and lapouts 
below, and that show relatively high reflectiv-
ity, positive im pedance contrast, and broad 
rollover (>50  m laterally from shelf to slope) 
consistent with elevation profiles of modern 
beaches. These low-dip subaerial deltaic depos-
its overlie forced regressive clinoforms. Reflec-
tions upslope from these low-dip reflections are 
truncated at or near the seafloor and are some-
times overlain by a thin veneer of sediment (e.g., 
Fig. 5, profile 2401, sediments above 90 m) de-
posited during and shortly after transgression. 
Each horizontally continuous terrace (Fig. 4B) 
contains, from proximal to distal, regressive de-
posits, lowstand subaerial deltaic deposits, and 
subaqueous deltaic sediments deposited during 
transgression. Thus, each terrace requires base-
level change approximately equal to eustatic 
sea-level fluctuations offshore southern Califor-
nia and therefore must represent one sea-level 
cycle. This transgressive-regressive succes-
sion is repeated in up to 16 parasequences on 
the northeast side of the island (Fig. 5, profiles 
2202, 2610) to four south of the island (Fig. 5, 
profiles 2503, 2512). Along the southeast mar-
gin of the island (Fig. 5, profile 2610), the strati-
graphic thickness becomes so small between the 
ninth and thirteenth sequence boundaries that 
we could not locate the shelf edge precisely. In 
contrast to these thin terraces, sequences north 
of the island (Fig. 5, profile 2202) were thick 
enough that subaqueous and subaerial deltas 
could be discriminated down to 470  m water 
depth. The thickness of sequences varies around 
Santa Catalina Island, likely due to varying sub-
sidence and sediment-supply histories for dif-
ferent sections of the island.

The basement rocks of Pilgrim Banks are 
overlain by at least 11 successive parasequences 
(Fig. 6, profile 2103) similar to those near Santa 
Catalina (Fig. 5), although only four bathymet-
ric terraces were observed (Fig. 3). Terraces are 
laterally extensive on the southwest side of Pil-
grim Banks (e.g., Fig. 6, profile 2103), but ter-
races on the northeast side are narrower and have 
steeper dips (e.g., Fig. 6, profile 3403) than the 

1GSA Data Repository item 2018247, which 
includes Table S1: Sample locations from Santa 
Catalina Island; Figure S1: Santa Catalina and San 
Clemente Island topography and bathymetry; Figure 
S2: Santa Catalina Island seismic data; and Figure 
S3: Pilgrim/Kidney Banks seismic data, is available 
at http:// www .geosociety .org /datarepository /2018 or 
by request to editing@ geosociety .org.

TABLE 3. RELATIVE ABUNDANCE OF BENTHIC FORAMINIFERA IDENTIFIED IN REMOTELY 
OPERATED VEHICLE SAMPLES FROM DIVES NA-067-002–007, AND NA-067-020–021

Sample number
002 003 004 005 006 007† 020–021

Astrononion incilis (Lankford) X X
Astrononion sp. X
Angulogerina angulosa (Williamson) X 1 X
Bulimina denudata (Cushman & Parker) 1 X
Angulogerina carinata (Williamson) X
Angulogerina spp. X X
Bolivina acuminata (Natland) X
Bolivina vaughani (Natland) X
Buccella tenerrima (Bandy) X
Cancris auricula (Fitchel & Moll) X
Cassidulina californica (Cushman & Hughes) 1
Cassidulina limbata (Cushman & Hughes) 3 X 6 1 6 18
Cassidulina spp. 2 2 X
Cassidulina subglobosa (Brady) X 5 1 1 4
Cassidulina tortuosa (Cushman & Hughes) 20 19 29 25 38 38 46
Cassidulinoides waltoni (Uchio) 1 X
Cibicides conoidea (Galloway & Wissler) 2 X X 4
Cibicides fletcheri (Galloway & Wissler) 32 34 17 17 5 8
Cibicides lobatulus (Walker & Jacob) 1
Cibicides mckannai (Galloway & Wissler) 2 X 4 5
Cibicides spp. X X 1 X
Cribrogoesella sp. X
Dyocibicides biserialis (Cushman & Valentine) 2 3 3 X 2 3 2
Ehrenbergina compressa (Cushman) X
Elphidium crispum (d’Orbigny) 3 2 3 13 6 X
Elphidium spp. 3 X 1 6 X
Fissurina lucida (Williamson) 1
Gaudryina arenaria (Galloway & Wissler) X 2
Gavelinopsis companulata (Galloway & Wissler) 6 14 2 19 12 4 X
Gavelinopsis turbinata (Cushman & Valentine) 9 16 1
Glabratella ornitissima (Cushman) 1 3 1 X
Hanzawaia sp. 1 X
Haplophragmoides sp. X
Hoeglundina elegans (d’Orbigny) 5 3
Lagena striata (d’Orbigny) X
Nonionella basispinata (Cushman & Moyer) 1
Patellina corrugata (Williamson) X 1
Planulina exorna (Phleger & Parker)* 17 2 21 9 2 4 1
Planulina sp. 4
Poroeponides cribrorepandus (Asano & Uchio) 2
Pullenia salisburyi (R.E. & K.C. Stewart) X
Pyrgo sp. X
Quinqueloculina laevigata (d’Orbigny) X
Quinqueloculina lamarckiana (d’Orbigny) 2 2 2 10 X X
Quinqueloculina spp. 3 6 1
Robulus sp. X
Rupertia stabilis (Wallach) 2
Sigmomorphina frondiculariformis (Galloway & Wissler) X X
Textularia schencki (Cushman & Valentine) 3 2 X X
Triloculina ornata (d’Orbigny) X
Triloculina spp. X
Trochammina spp. X X X
Uvigerina juncea (Cushman & Todd) X X X

Note: See Data Repository Table S1 for sample locations (text footnote 1).
*P. ariminensis and P. ornata of some authors.
†See Figure 7C.

http://www.geosociety.org/datarepository/2018
mailto:editing%40geosociety.org?subject=
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terraces on the southwest side of the banks. The 
Santa Cruz–Catalina Ridge fault dissects the ter-
races on the northeast side of the Pilgrim Banks, 
making sequence interpretation problematic in 
our existing data (Fig. 6, profile 3403). On Kid-
ney Banks, “terraces of unknown age” (Fig. 6, 
profiles 3403 and 3201) are likely equivalent to 
marine oxygen isotope stage (MIS) 10 to MIS 
30, based on their depths.

The most laterally extensive bathymetric ter-
races surrounding Pilgrim Banks (T4: Figs. 3 
and 6) and Santa Catalina Island (T6: Figs. 2 
and 5) are underlain by stratigraphically simi-
lar sequences that share similar architecture and 
elevation distribution. We correlated the ter-
races between Santa Catalina Island and Pilgrim 
Banks based on the similarity of distinct forced 
regressive strata identified from their prograding 
and downstepping stacking patterns (Figs. 5 and 
6, MIS 14/16 forced regressive wedge; Hunt and 
Tucker, 1992), which are overlain by five clear 
sequences around Santa Catalina Island and Pil-
grim Banks. This suggests a minimum age (see 
discussion, below) of ca. 530 ka (MIS 14) for 

T6 at Santa Catalina and T4 at Pilgrim Banks. 
At Pilgrim Banks, the distinct forced regres-
sive wedge is also overlain by five sequences, 
although the uppermost terrace at Pilgrim Banks 
is thin compared to the uppermost sequences 
near Santa Catalina Island, presumably owing 
to decreasing availability of detrital material 
on the subsiding banks, which are separated by 
deep water from any other terrestrial source. It 
is known that the upper surface at Pilgrim Bank 
(Fig. 3, T1) last experienced deposition during 
the LGM (Chaytor et al., 2008).

Lithology

The terrace sediments around Santa Catalina 
Island are composed of conglomerates, sand-
stones, and siltstones interbedded with bioru-
dites, and minor landslide deposits (Fig. 7; 
Table 1). We found no evidence that sediments 
in the terrace package surrounding Santa Cata-
lina Island were sourced from anywhere but the 
island. We recovered rounded cobbles from the 
seafloor around the island in Van Veen samples 

from as deep as 218  m and 8.6  km offshore 
along profile 2512, Stanford sample 1415 (Figs. 
2 and 7C). Similar cobbles have been recovered 
by other researchers from dredge hauls several 
kilometers from the modern shoreline (Rit-
ter, 1901). We also identified rounded cobbles 
during ROV dives in conglomerate beds within 
the terrace sequence (Figs. 7B and 7D). Their 
widespread distribution (some far removed from 
rivers) suggests a nonfluvial origin, likely in the 
intertidal zone. Although the local Los Ange-
les Basin Gabrieleno-Tongva Native Ameri-
cans transported significant numbers of wave-
rounded stones around the island (Glassow, 
1980), they cannot account for rounded cobbles 
widely distributed far offshore within Santa 
Catalina’s deepest, oldest terraces.

Sample NA067-001 (Fig. 5, profile 2610) is a 
sandy limestone composed of mostly shell frag-
ments and quartz grains with <2% lithic grains. 
Samples NA067-002 (Fig. 5, profile 2610) 
through NA067-008 and NA067-010 are bio-
clastic marls typical of insular submerged ter-
race and bank tops in the California  Continental 

TABLE 4. RELATIVE ABUNDANCE OF PLANKTONIC FORAMINIFERA IDENTIFIED IN REMOTELY 
OPERATED VEHICLE SAMPLES FROM DIVES NA067-002–007 AND NA067-020–021

Sample number
Last appearance in fossil record002 003 004 005 006 007 020–021

Planktonic species†

Globigerina bulloides (d’Orbigny) 42 34 42 X* X* 44 27
Globigerina falconensis (Blow) X
Globigerina quinqueloba (Natland) 2 4 10 4
Globinerinella aequilateralis (Brady) X
Globigerinoides ruber (d’Orbigny) 1 1 X* 2 4
Globigerinoides sp. X
Globigerinita uvula (Eherenberg) 3 X X 1
Globorotalia crassaformis (Galloway & Wissler) X 1 X 0.2 Ma
Globorotalia hirsuta (d’Orbigny) X
Globorotalia inflata (d’Orbigny) X
Globorotalia tosaensis (Takayanagi & Saito) X
Globorotalia truncatulinoides (d’Orbigny) 1 0.61 Ma
Neogloboquadrina dutertrei (d’Orbigny) X* X 16
Neogloboquadrina incompta (Cifelli)§ 11 24 14 X* X* 32 38
Neogloboquadrina inglei (Kucera & Kennett) 2 0.7 Ma
Neogloboquadrina pachyderma (Eherenberg)# 38 37 40 X* X* 10
Neogloboquadrina sp. X
Orbulina universa (d’Orbigny) 1 4

†Percent of total number of specimens counted in each sample; X = <1%; X* = less than 50 specimens counted in sample.
§Dextral coiling forms formerly assigned to N. pachyderma (see Darling et al., 2006).
#Sinistral coiling specimens.

TABLE 5. ACCELERATOR MASS SPECTROMETRY (AMS) 14C RADIOCARBON AGES OF REMOTELY OPERATED 
VEHICLE SAMPLES FROM SUBMARINE CANYON NORTH OF SANTA CATALINA ISLAND

Ocean Exploration Trust Data from LLNL Calibrated ages

Sample
Longitude

(°W)
Latitude

(°N)
Depth

(m) Species
CAMS

no.

14C age
(yr) ±

1σ age
(yr B.P.)

2σ age
(yr B.P.)

NA075-114C-01 118.3613 33.4051 115.5 Tellina bodegensis 
(Hinds, 1845)

176333 41,650 740 45,244 43,913 45,809 43,264

NA075-114C-02 118.3613 33.4051 115.5 Nutricola sp. 176347 35,670 360 40,069 39,200 40,466 38,805
NA075-114C-03 118.3613 33.4051 115.5 Nutricola sp. 176359 45,500 1200 49,455 47,099 50,068 46,171
NA075-115C-01 118.3612 33.4054 104.5 Nuculana cf. N. hamata

(Carpenter)
176334 40,240 630 43,924 42,881 44,520 42,501

NA075-115C-02 118.3612 33.4054 104.5 Tellina bodegensis 
(Hinds, 1845)

176348 14,910 60 17,592 17,347 17,683 17,215

NA075-115C-03 118.3612 33.4054 104.5 Tellina bodegensis 
(Hinds, 1845)

176360 11,670 40 13,071 12,886 13,156 12,816

Note: Samples older than the Last Glacial Maximum (LGM) are in bold. LLNL—Lawrence Livermore National Laboratory.
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Borderland (Douglas et  al., 1980) and are 
composed largely of bryozoan and molluscan 
shell fragments, tests of benthic and planktonic 
forami nifera, ostracode valves, echinoid spines, 
and sponge spicules (Fig. 7E). Preservation 
of benthic and planktonic foraminifera ranges 
from poor to moderately well preserved, with 
many samples showing evidence of dissolu-
tion and recrystallization. Sample NA067-009 
is a fine-grained sandstone with mollusk frag-
ments and minor bioclastic fragments. Samples 
NA067-020 and NA067-021, collected near 
an exposure of igneous rock that protrudes 
through the marine terrace package at ~230 m 
depth north of Santa Catalina Island near the 
Santa Cruz–Catalina Ridge fault (Fig.  5, pro-
file 2207), are foraminiferal-rich silts with 
abundant  Lophelia pertusa corals within the 
sediment. Other units observed during the 2015 
ROV dives included sand-rich beds containing a 
single-species death assemblage of the bivalve 
mollusk  Euvola stearnsii (Fig. 7F), and 1–2-m-
thick lithic sandstones.

Macrofossils

Mollusks recovered from samples NA067-
002–NA067-007 (Fig. 5, profile 2610; Fig. 7E; 
Table 2) provide chronologic and paleodepth 
information (Fig. 8). All mollusks lived in the 
epipelagic zone at a maximum depth of ~200 m. 
The extinct bivalve Cyclocardia occidentalis, re-
covered from NA067-006, is a shallow in faunal 
suspension-feeder found from the Pliocene 
to Middle Pleistocene in southern California 
(Moore, 1992). Today, the genus Cyclocardia 
off California occurs at inner- to outer-shelf 
depths (15–200 m; Coan et al., 2000). Chlamys 
hastata, recovered from sample NA067-004, 
has a modern geographic range from the Gulf of 
Alaska south to San Diego, California, in water 
depths from the intertidal zone to 150 m (Coan 
et al., 2000) and occurs in formations as old as 
late Miocene, as interpreted from formations 
listed in Moore (1984).

Sample NA067-007 (Fig. 7E) contains the 
gastropod Pomaulax gibberosa, found at  water 
depths between the intertidal zone and greater 
than 17  m (Keen, 1971), and the bivalve 
 Leporimetis obesa, which occurs from the deep 
intertidal zone to ~50  m (Coan et  al., 2000). 
Astraea gibberosa limits the depth of deposi-
tion for this sample to probably less than 20 m. 
Euvola  stearnsii, identified in samples NA067-
003, NA067-005, and NA067-007, is extinct 
and limits the youngest age of these terraces 
to middle Pleistocene, based on formations in 
which it occurs as listed in Moore (1984).

Sample NA075-114 was recovered from 
low-dip clinoforms that immediately underlie a 
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transgressive surface (Fig. 4B; Tables 2 and 5). 
We exploited submarine canyons that incise 
into the 90-m marine terrace surrounding the is-
land (Fig. 2, T2), navigating the Hercules ROV 
from shore using MCS and CHIRP data (Fig. 2, 
 inset 2) and sampling sediments using a suction 
sampler. We were able to recover only a small 
amount of material from these clinoforms. 
Species from this sample restrict its depth of 

deposition likely to between 50  m, based on 
the shallowest occurring gastropod Solariella 
peramabilis (50–350 m; McLean, 1996), and 
100 m (deepest occurrence of the bivalve Glans 
carpenteri [0–100 m]; Coan et  al., 2000). All 
taxa in NA075-114 still occur at the latitude 
of Santa Catalina Island, and none is age diag-
nostic. However, calibrated radiocarbon ages 
(Table  5) on three bivalves from this sample 

immediately below a transgressive surface (Fig. 
4B) span 50–39 ka (MIS 3). Equivalent ages for 
two bivalves from sample NA075-115 taken 
stratigraphically just above the same transgres-
sive surface span 18–13 ka (MIS 2), and ages for 
a third bivalve span 45–43 ka, likely reworked 
from a deeper horizon. Because foresets are de-
posited via avalanching of sediments that accu-
mulate at the shelf edge (Pomar and Tropeano, 

33.4075, -118.3314, -258.5m

NA067-007, 33.4076, -118.3313, -258.5m

33.4118, -118.3274, -349.9m

Stanford 1415, 33.262, -118.235, -218m

33.4083, -118.3303, -290.9m

33.4121, -118.3267, -350.7m

D

Carbonate

Silts-Sands w/ wave-rounded cobbles

Muds-silts

E Euvola stearnsiiChlamys hastata

Carbonate marl

BA
Dissolved carbonate

Talus

Carbonate marl

Carbonate marl Wave-rounded cobble

NA067-002 layer

Silts-sands

C
10 cm

F

Shell Hash

Silty carbonates

Euvola stearnsii

Subaqueous deltaic
deposits

50cm

50cm

50cm

25cm

Figure 7. (A) Remotely operated vehicle (ROV) photograph of interbedded carbonates and detrital clastic rocks deposited near sea level, 
now at 351 m depth (Fig. 2, inset 2; Fig. 5). (B) ROV photograph of interbedded carbonates and rounded cobble–bearing sediments depos-
ited near sea level, now at 350 m (Fig. 2, inset 2; Fig. 5). (C) Rounded cobbles from Stanford Sample 1415, from 8 km offshore and 218 m 
depth. (D) ROV photograph of rounded cobbles weathered out of terrace sediments (Fig. 2, inset 2; Fig. 5), now at 259 m depth. (E) Sample 
NA067-007, highly cemented carbonate marl with the extinct bivalve Euvola stearnsii, collected close to photograph D. (F) ROV photograph 
of death assemblage containing extinct Euvola stearnsii bivalves (Fig. 2, inset 2; Fig. 5).
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2001), samples will necessarily contain a low 
proportion of articulate bivalves, and they were 
likely subjected to some reworking at least once 
prior to deposition. Though additional sampling 
and dating are needed, samples NA075-114 and 
NA075-115 appear to bracket the LGM, imply-
ing they are separated by the post-LGM trans-
gressive surface.

Microfossils

Paleoenvironmental Significance of 
Benthic Foraminifera

All of the species of benthic foraminifera 
identified are still living within the continental 
borderland off southern California and northern 
Baja California, Mexico, as documented in a 
number of reports (e.g., Walton, 1955;  Zalesny, 
1959; McGlasson, 1959; Uchio, 1960; Doug-
las, 1981). In particular, several studies have 
focused on the distribution of modern shelf 

(neritic) and littoral faunas in this region (e.g., 
 Resig, 1960; Cooper, 1961; Bandy, 1963; 
Bandy et  al., 1964; Lankford and Phleger, 
1973;  Argow, 1999; McGann, 2002, 2009). 
Thus, the modern distributions of the benthic 
species identified in this study are reasonably 
well established, and we used these data to inter-
pret the environment and water depths at time of 
deposition of the samples analyzed in this study.

Douglas (1981) made a comprehensive study 
of benthic foraminifera in the California Conti-
nental Borderland and recognized eight recur-
rent benthic faunal assemblages characteristic 
of (1) offshore bank and terrace deposits with 
a mean upper water depth of 50 m, and (2) off-
shore ridge and deep bank assemblages with a 
mean upper water depth of 150 m. Five of the 
benthic species characterizing Douglas’ (1981) 
offshore bank and terrace assemblage, includ-
ing Cassidulina limbata, Cassidulina subglo
bosa, Cassidulina tortuosa, Cibicides fletcheri, 

and Gavelinopsis (Rotorbinella) companulata, 
together comprise 48%–68% of the benthic 
assemblages identified in samples NA067-002 
through NA067-020 (Fig. 5, profiles 2610, 
2207). Therefore, we interpret these sample as-
semblages as representing similar depositional 
settings and water depths to those of the mod-
ern offshore bank and terrace assemblage of 
 Douglas (1981).

Cassidulina tortuosa is the most abundant 
benthic species in the samples we analyzed, 
with relative abundances of 20%–46% in these 
assemblages. The depth range of maximum rel-
ative abundances of C. tortuosa in the modern 
California Continental Borderland is 34–91 m, 
with a mean depth of 59  m (Walton, 1955; 
 Zalesny, 1959; Uchio, 1960). The nine species 
comprising 5% or more of the fossil benthic as-
semblages in our samples have their maximum 
living abundances at water depths from littoral 
through neritic depths. Similar patterns of liv-
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semblage of fossils recovered in each sample based on depth ranges of foraminifera (thin vertical lines) or mollusks 
(thick vertical lines) of species living today. Horizontal light-gray bar at 90–100 m represents typical lowstand sea 
level in the late Quaternary; r.m.s.l.—relative mean sea level.



Castillo et al.

14 Geological Society of America Bulletin, v. 1XX, no. XX/XX

castillo-B31738.1  2nd pages / 14 of 22

ing benthic species were recognized by Mc-
Gann (2002) through Q-mode cluster analysis 
of census data recorded by Zalesny (1959) in 
Santa Monica Bay, California, where an outer-
shelf assemblage marked by C. tortuosa and C. 
limbata ranges from 59 to 137 m water depth.

The living depth ranges and abundance pat-
terns of the nine most abundant benthic taxa 
in samples NA067-002 through NA067-007 
( Table 3; Fig. 8) suggest that the sediments 
containing these assemblages were deposited at 
 water depths of 25–45 m. The shallowest-dwell-
ing taxa in these assemblages include Quinque
loculina spp., Elphidium spp., and E. crispum, all 
of which have their maximum living abundances 
at littoral to neritic water depths. However, both 
broken and whole specimens of these species 
commonly show evidence of abrasion, indicat-
ing some degree of transport. Other taxa, includ-
ing Gavelinopsis companulata, are common to 
abundant at midshelf depths, while Cassidulina 
limbata and C. subglobosa range to the shelf 
edge and upper slope in the modern California 
Continental Borderland. Benthic foraminifera in 
sample NA067-020 included higher abundances 
of C. limbata, indicating this sediment may have 
been deposited at a water depth of ~100 m.

Previous studies of onshore Pleistocene 
marine deposits in southern California found 
forami niferal assemblages similar in charac-
ter to those analyzed in this study and reflect 
depo si tion at littoral to neritic water depths. For 
example, Douglas (1981) recognized that his 
living offshore bank and terrace assemblage is 
similar to the foraminiferal fauna described by 
Galloway and Wissler (1927) from the middle 
Pleistocene Lomita Marl, exposed along the 
flank of the Palos Verdes Hills, which repre-
sents an uplifted former island in the evolving 
California Continental Borderland. Similar ben-
thic assemblages have also been reported from 
the early to middle Pleistocene Santa Barbara 
Formation (Patterson et al., 1990) and Pleisto-
cene terrace deposits exposed on San Clemente 
 Island (Lipps, 1967) and Santa Barbara Island 
(Lipps et al., 1968) in the California Continen-
tal Borderland region.

To summarize, the fossil benthic foraminif-
eral assemblages identified in samples NA076-
002 through NA067-007 and NA067-20 are 
characteristic of both modern and Pleistocene 
neritic/shelf marine terrace assemblages re-
ported from multiple sites in the California 
Continental Borderland. Moreover, the species 
compositions of these assemblages are quite 
distinct from those at the water depths of 230–
354  m from which they were sampled. Ben-
thic foraminiferal assemblages typically found 
living at upper-slope water depths (>130  m) 
in the California Continental Borderland are 

dominated by Bolivina spp., Epistominella san
diegoensis, Globobulimina pacifica, Suggrunda 
eckisi, and Uvigerina spp. (Douglas, 1981), 
a composition that stands in sharp contrast to 
those found at neritic water depths. In addition, 
if the assemblages observed in our samples had 
experienced downslope transport to upper-slope 
water depths after initial deposition, they would 
contain significant admixtures of species typi-
cal of these latter depths, or even be completely 
dominated by upper-slope taxa. Thus, we view 
the assemblages in our samples as in situ evi-
dence of water depth at time of deposition. In 
addition, the consistency of paleo–sea levels 
predicted by each of six to ten species within 
each sample (Fig. 8), and the consistency be-
tween samples of modern sampling depth and 
predicted paleo–sea level (also Fig. 8) strongly 
suggest that our paleontologically determined 
paleo–sea levels from individual samples are 
accurate within 10 m.

Paleotemperature and Age Significance of 
Planktonic Foraminifera

The abundance of planktonic foraminifera 
in samples NA067-002 through NA067-007 
ranged from common to sparse, and their 
preser vation was generally poor. A more diverse 
and well-preserved assemblage was present in 
sample NA067-020. Sixteen species were iden-
tified in this sample (Table 4), of which all but 
three are known to be living in the modern Cali-
fornia Continental Borderland.

Significant changes in the composition of 
Holocene–Pleistocene planktonic foraminifera 
have occurred in the California Continental 
Borderland over the Pleistocene as a result of 
global and regional paleoclimatic and paleo-
ceanographic events (e.g., Kennett and Venz, 
1992; Lyle et al., 2000; Hendy, 2010). Aspects 
of these changes are clearly reflected by differ-
ences in the planktonic assemblages in samples 
NA067-002 through NA067-020. For example, 
relatively high abundances of sinistral coiling 
forms of Neogloboquadrina pachyderma in 
samples NA067-002–NA067-004 mark times 
of cooler sea-surface temperatures. In contrast, 
the absence of sinistral coiling specimens of 
N. pachyderma in sample NA067-020 and the 
presence of relatively high abundances of Neo
globoquadrina incompta and warmer-water 
species, including Neogloboquadrina dutertrei 
and Globigerinoides ruber, indicate warmer 
surface temperatures.

Three species of planktonic foraminifera 
provide limited evidence of age for samples 
NA067-002, NA067-004, and NA067-020. Net-
tow and sediment-trap studies of planktonic for-
aminifera in the marginal northeastern Pacific 
Ocean indicate that Globorotalia crassaformis 

is no longer present within living assemblages 
in this region (e.g., Sautter and Thunell, 1991), 
although it is living elsewhere in the global 
oceans. Significantly, G. crassaformis is com-
monly found in Pliocene through Pleistocene 
assemblages in onshore and offshore deposits 
in the southern California region and elsewhere 
along the Pacific Coast of North America. Accu-
mulating evidence suggests that G. crassaformis 
became regionally extinct at ca. 200 ka. If this 
pattern is confirmed, the presence of this taxon in 
samples NA067-002 and NA067-004 indicates 
that these samples are no younger than 0.20 Ma. 
The planktonic assemblage in sample NA067-
020 includes two extinct species, Globorotalia 
tosaensis and Neogloboquadrina inglei. The last 
appearance of G. tosaensis is 0.61  Ma (Wade 
et al., 2011), and the last appearance of N.  inglei 
is ca. 0.70  Ma (Kucera and Kennett, 2000). 
Based upon the presence of these two strati-
graphically restricted species, these sediments 
are no younger than 0.70–0.60 Ma.

DISCUSSION

We have presented the evidence that regres-
sive to transgressive sequences are preserved 
around Santa Catalina at depths greater than 
400 m (Fig. 5), that intertidal facies in the form 
of wave-rounded cobbles are present to at least 
350  m water depth (Fig. 7), and that benthic 
foraminiferal and molluscum assemblages, in-
cluding taxa that became extinct by the Middle 
Pleistocene, collectively indicative of deposi-
tional water depths <50 m are now present be-
low 300 m (Fig. 8). These modern water depths 
of Middle Pleistocene littoral facies greatly ex-
ceed the deepest Pleistocene paleo–sea levels 
of ~100  m and require correspondingly large 
tectonic subsidence. We identified the subsided 
LGM transgressive surface, with its paleo–sea-
level marker, between 85 and 100 m (Figs. 4B 
and 4D, highlighted yellow), consistent with 
LGM paleo–sea-level estimates in the Califor-
nia Continental Borderland of ~95  m (Muhs 
et al., 2014). We next review our model for ter-
race development, discuss possible caveats, and 
then consider the timing, causes, and rates of 
vertical motion of Santa Catalina Island and the 
Pilgrim/Kidney Banks.

Terrace Development Model

Whereas uplifted terraces are formed mostly 
during highstands, submerged terraces are 
relatively complex systems that are formed 
during all phases of eustatic sea-level change, 
i.e., transgressive and regressive cycles (Miall, 
2010). On a subsiding margin, basement is first 
exposed to erosion by waves during highstand 
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events. In highstand conditions, the coarsest-
grain deposits, boulder wedges, are developed 
from the eroding bedrock, while finer material 
is carried downslope (Pomar and Tropeano, 
2001). Subaerial deltas with gravel- to sand-rich 
beaches, both fluvially and coastally supplied, 
form in  areas of relatively high sediment sup-
ply or where waves and coastal configurations 
are favorable to stable beaches. In the absence 
of fluvial supply, sediment sourced by wave- 
induced erosion of exposed basement or land-
slide deposits is mobilized directly by wave en-
ergy and is transported downslope. Significant 
landslides observed during the M 5.3 earthquake 
near Santa Cruz Island on 5 April 2018 suggest 
that seismically triggered landslides supply sig-
nificant amounts of sediment to the shelf. The 
finest-grained suspended sediments are en-
trained in currents and redistributed in subaque-
ous deltas, while coarser material is transported 
as bed load. Landslide deposits are common in 
the most proximal portions of each terrace (Figs. 
4A and 4B) and are seismically distinct from 
finer-grained subaerial and subaqueous deltaic 
deposits. Following the highstand, wave base 
drops as regression begins, and poorly consoli-
dated sediments deposited during the highstand 
are eroded and redeposited downslope (Miall, 
2010). This process continues throughout the 
regression and accounts for the area of thin sedi-
ments between the modern shallow subaqueous 
delta deposits and the deeper terrace sediments 
comprising the outer shelf (Fig. 5, profile 2503, 
70–85  m depth, and profile 2207, 75–85  m 
depth). These falling-stage systems tract strata 
are the proximal sediments in each terrace (non-
shaded portions of terrace packages in Figs. 5 
and 6), and they contain variations in dip that 
may be signals of fourth-order and suborbital-
scale sea-level fluctuations.

Lowstand terrace deposits are the culmination 
of millennia of cannibalistic downslope trans-
port of sediment. The final signal of a lowstand 
is the paleoshoreline (Fig. 5, profile 2202, black 
circles) and its low-dip reflectors with clear roll-
overs at the top (Fig. 4). Sample NA075-114, 
collected immediately below our mapped LGM 
transgressive surface (Fig. 4B), is composed of 
unconsolidated sand containing several rounded 
cobbles and abundant shell fragments, and it 
contains bivalves with radiocarbon ages all 
older than the LGM (corresponding to MIS 3; 
Table 5) and fossil assemblages indicative of 
water depths of 25–100  m. During the LGM 
lowstand, unconsolidated sediments deposited 
during regression were reworked and incor-
porated into coarse-grained beach deposits. At 
the onset of transgression, the lowstand sub-
aerial delta transitioned into a subaqueous delta, 
signaled by the deposition of steeply dipping 

foreset beds. Sample NA-075-115, collected 
immediately above our mapped LGM transgres-
sive surface, is composed of silts and fine sand 
(muds were lost during suction sampling), and it 
contained two bivalves younger than the LGM 
(from early MIS 1 and late MIS 2), as well as 
one bivalve we presume to have been reworked 
(MIS 3 Table 5). The taxa in this sample restrict 
the minimum depth of deposition of this sam-
ple to ~50  m, consistent with deposition dur-
ing transgression. In cross section, a lowstand 
subaerial delta is concave up at its base, due to 
the shape of the underlying clinoform lapout, 
and convex up on its top, due to sediment dif-
fusion at the top of the most distal foresets. 
These lozenge-shaped packages of sediment are 
often acoustically transparent and occasionally 
have negative impedance with respect to overly-
ing deposits. The final transition from low dips 
(<6°) of subaerial deltas to high dips (6°–27°) 
of subaqueous deltas is the transgressive surface 
(Figs. 4B and 4D). During deposition through-
out transgression, sediments deposited during 
the previous regression are partially eroded, and 
that material is redeposited in gradually deep-
ening  water. When sea level reaches a stable 
highstand, subaerial and subaqueous deltas are 
respectively deposited at depths of 0–15 m and 
30–60 m (possibly deeper). The lowstand shelf 
becomes isolated from clastic sedimentation, 
and carbonate marls begin to form on the shelf.

Potential Arguments Against Subsidence

Islands in the California Continental Border-
land that are indisputably uplifting (e.g., San 
Nicolas [Muhs et al., 2014] and San Clemente 
[Muhs, 1982]) generally possess one subsided 
terrace approximately at lowstand sea level (Fig. 
S1 [see footnote 1]). A claim that San Clemente 
exhibits at least four subsided marine terraces 
has been taken to suggest that “the existence of 
terrace-like landforms around Santa Catalina 
Island does not necessarily constitute evidence 
of Quaternary subsidence” (Schumann et  al., 
2012, p.  220). However, the identification of 
these terraces around San Clemente Island is 
based on bathymetric data with gridding arti-
facts (Schumann et  al., 2012, their fig. 12; cf. 
Fig. S1 herein [footnote 1]). Our incorpora-
tion of additional bathymetric data (Fig. S1 
[footnote 1]) makes it clear that San Clemente 
is circumscribed by a single terrace, the outer 
edge of which was likely a subaqueous delta 
during the LGM lowstand, and that San Clem-
ente exhibits no terraces >50 m below lowstand 
depth. Santa Cruz Island, although uplifting, 
is an exception in having some subsided ter-
races below lowstand depths, despite its recent 
and ongoing uplift (Pinter et al., 2001, 2003). 

However, whereas Santa Catalina’s terraces and 
the single LGM terrace completely encircle that 
island, the subsided terraces around Santa Cruz 
Island (and Anacapa to the east and Santa Rosa 
Island to the west) only occur north and south 
of the islands and are the subsiding flanks of 
a growing anticline that is striking east-west. 
Pinter et al. (2003) showed that their conceptual 
model of Santa Cruz as a broad flexural “listric-
thrust fold” is consistent with regional estimates 
of elastic thickness of just 4–8  km (Bechtel 
et al., 1990). We can rule out the possibility that 
Santa Catalina has similarly experienced on-
shore Quaternary uplift while surrounding ter-
races subsided using the same two-dimensional 
elastic-plate flexural model (Sandwell, 2001) as 
employed by previous researchers (e.g., Pinter 
et  al., 2003). If Santa Catalina was uplifting 
while its terraces were subsiding, then the hinge 
line of zero-vertical motion must encircle the 
island between the coast and the first subsided 
terrace T3. A flexural wavelength equivalent to 
the maximum across-island distance between 
the hinge lines of ~15  km along section A-A′ 
and only ~6  km along section B-B′ (Fig. 2) 
would require elastic thicknesses of ~500 m and 
~85 m, respectively, i.e., one or two orders of 
magnitude smaller than other estimates of elas-
tic thickness on and offshore southern Califor-
nia (Sheffels and McNutt, 1986; Bechtel et al., 
1990). Hence, it is implausible that Santa Cata-
lina Island is uplifting while its terraces subside.

Additional evidence that Santa Catalina Is-
land is not folding is the fanning of terrace dips 
to the northeast (Fig. 9) and the asymmetry of 
the drainage divide (Schumann et  al., 2012), 
both of which are consistent with block tilting. 
The absence of onshore seismicity further sug-
gests Catalina Ridge is a single block, bounded 
by near-vertical strike-slip faults, as shown by 
offshore seismicity and MCS profiles (Legg 
et  al., 2015, their figs. 5C and 6B). The evi-
dence of terrace subsidence around Santa Cata-
lina and the evidence against significant internal 
deformation of the island block suggest that the 
interior of Santa Catalina is subsiding and tilting 
at the same rate as the offshore regions.

Having shown that islands in the California 
Continental Borderland that are marked with 
uplifted terraces have only a single subsided 
terrace (e.g., San Clemente), unless they are 
actively folding (e.g., Santa Cruz, Anacapa), 
and that Santa Catalina is tilting not folding, 
we are left with one final possibility for mod-
ern uplift of Santa Catalina. If the observed 
subsided terraces are all Early Pleistocene, then 
Late Pleistocene uplift is a theoretical possi-
bility. Schumann et al. (2012) argued that the 
entirety of Santa Catalina Island, including its 
expected prominent MIS 5 terrace, has been 
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resurfaced by a pulse of “late Quaternary” 
uplift that has removed all early Pleistocene 
terraces. However the surface of the island’s 
interior is covered entirely with mature soils 
(USDA, 2008). The conglomerate at the Ben 
Weston Overlook (Fig. 2, red circle) contains 
rounded cobbles of garnet-amphibolite– facies 
Catalina Schist, which only outcrops near the 
airport (Grove et  al., 2008, their fig. 2, red 
outline), and thus must have been transported 
southwest at least 5 km. Modern drainages be-
tween the garnet-amphibolite bedrock outcrops 
and the garnet-amphibolite cobble conglom-
erate strike roughly N60°W and do not allow 
garnet-amphibolite rocks from near the center 
of the island to be deposited at the Ben Weston 
Overlook today. This implies that a separate 
network of drainages predated the drainage net-
work observed today, consistent with the inte-
rior topography of Santa Catalina having been 
formed by erosion over at least the 1.1 m.y. that 
we propose below as the latest possible onset 
of subsidence. Over the same time period, the 
steep topography near the coast was created 
by subsidence-induced coastal retreat that re-
moved the alluviated canyons (often seen as a 
response to rising base level), producing topog-
raphy that superficially appears uplifted.

Dating the Vertical Motion of 
Santa Catalina Island

Late Quaternary subsidence of Santa Cata-
lina Island following uplift of Catalina Ridge is 
confirmed by multiple lines of evidence—most 
simply by faunal assemblages deposited in 
 water shallower than 50 m that are now found 
at depths up to 350 m (Fig. 8). Identification of 
regressive through transgressive strata within 
each terrace provides a depositional model for 
the formation of submerged marine terraces 
during sea-level fluctuations, and it allows us to 
identify paleo–sea level. Samples above and be-

low our mapped transgressive surface within the 
90 m terrace at Santa Catalina Island have radio-
carbon ages consistent with our assignment of 
an LGM age. Our biostratigraphic evidence of 
the age of the deepest terrace sediments (ex-
tinct taxa in Fig. 8) provides only modest con-
straints on the timing of the onset of sub sidence. 
Nonetheless, the presence of 16 successive 
para sequences (Fig. 5, profile 2202), each rep-
resenting one fourth-order Milankovitch-scale 
sea-level cycle, requires subsidence over at least 
16 sea-level cycles. Thus, the youngest pos-
sible age for the deepest sequence and the on-
set of sub sidence is 1.13 Ma (MIS 34; Fig. 10; 
Lisiecki and Raymo, 2005).

Santa Catalina’s terrace package reaches a 
maximum depth of at least 470 m north of the 
island (Fig. 5, profile 2202), and the deepest 
subaerial/subaqueous delta transition identified 
is at 408 ± 2 m depth, overlain by 15 additional 
parasequences. Following Lajoie (1986), we 
connected the modern depth of each subaerial/
subaqueous delta transition to a corresponding 
lowstand in the sea-level curve with a straight 
line representing constant subsidence rate (Fig. 
10A). Because the suite of parallel lines of con-

stant subsidence rate intersects all the principal 
lowstands in the paleo–sea-level curve (within 
uncertainties in the paleo–sea-level curve back 
to MIS 34), we suggest an average subsidence 
of 0.27 mm/yr for profile 2202 (Fig. 9A). Un-
conformities may be present that would require 
a lower average subsidence rate over a longer 
time period, but our correlation has the merit 
of explaining the existence of all 16 para-
sequences without changing the sign of verti-
cal tectonic motion and with minimal variation 
in rate of deposition (i.e., no hiatuses). North 
of Avalon (Fig. 5, profile 2610), the deepest 
subaerial/subaqueous delta transition is at a 
depth of 290 m today, but it is also overlain by 
15 parasequences, implying 195 m subsidence 
over 1.13 m.y. at 0.17 mm/yr. South of Avalon, 
terrace deposits become too thin to correlate, 
so we could not directly calculate a subsidence 
rate. However, the presence of the sequences 
at depths much greater than lowstand depth 
requires subsidence for this portion of the 
 island also.

In contrast to the deep terraces northeast of 
the island, terraces along the Catalina Escarp-
ment southwest of the island are consistently 

Figure 9. Three-dimensional 
(3-D) view of Santa Cata-
lina and adjacent shelf look-
ing southeast at North Point 
with 10× vertical exaggeration.  
Topog raphy shown in dark 
gray, and higher elevations have 
“mist.” Bathymetry is repre-
sented in 3-D perspective view by 
digital elevation model (DEM; 
Fig. 2) overlain with slope map. 
Darker colors are steeper slopes. 
Sub hori zontal lines are mea-
sured dips of terraces T2, T5, 
and T6, and dissected T8.

Figure 10 (on following page). Correlation of submerged subaerial/subaqueous delta tran-
sitions with a glacial isostasy–adjusted (GIA) sea-level curve. Solid black line repeated in 
parts A, B, and C is the stacked sea-level record (Spratt and Lisiecki, 2015), adjusted for 
glacial isostasy using a lowstand value of ~95 m (Muhs et al., 2014). Dashed black line is a 
stack of 57 globally distributed benthic foraminiferal δ18O records (Lisiecki and Raymo, 
2005), scaled to sea-level maxima and minima. Open circles on left side are subaerial/sub-
aqueous delta transitions identified in seismic data (Figs. 5 and 6). Marine isotope stages 
(MIS) are shown along bottom, where gray time intervals correspond to gray-shaded sub-
aqueous deltas in Figures 5 and 6. Dipping lines are best-fit correlations of the subaerial/
subaqueous delta transitions to stillstands in the GIA curve, using a constant subsidence 
rate. LGM—Last Glacial Maximum. (A) Stanford profile 2202, northeast of Santa Cata-
lina, subsiding 0.27 mm/yr. (B) Stanford profile 2401, southeast of Santa Catalina, subsiding 
only 0.08 mm/yr, indicative of tilt to the northeast (Fig. 9). (C) Stanford profile 2103, across 
Pilgrim Banks, modeled as subsiding at 0.3 mm/yr back to 360 ka B.P., but at 0.12 mm/yr 
in the Middle Pleistocene.
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thinner and fewer in number. South of Two 
Harbors (Fig. 5, profile 2503), the terraces con-
tain seven identifiable parasequences, implying 
deposition since at least 0.8 Ma (MIS 20; Fig. 
10B). The deepest observed subaerial/subaque-
ous delta transition on profile 2503 is now at 
a depth of ~160 m, implying subsidence of at 
least 65 m at ~0.08 mm/yr. South of Farnsworth 
Bank, the determination of a subsidence rate 
was complicated by active extension along the 
Catalina fault that forms the Catalina Escarp-
ment (Fig. 2) and dissects the older terraces. 
The remaining thin terrace packages were cor-
related to T1–T6 on the NE side of the island, 
but any deeper terraces have been dissected by 
the Catalina fault and translated downslope and 
to the northwest. The fanned dips of T1–T6 on 
the northeast side of the island suggest NE tilt-
ing has accompanied subsidence. Bathymet-
ric analysis (Keneally, 2016) showed that the 
deepest bathymetric terrace we can correlate 
around Santa Catalina Island (T6) dips ~1.5° 
to the northeast (Fig. 9), implying accumulated 
tilt of 1.5° since 625 ka (MIS 16). The deepest 
terraces overlie subplanar acoustic basement on 
an unconformity that dips ~3° to the northeast 
(Fig. 5, profiles 2610, 2202). If this basement 
was wave-planed, NE tilting likely predated, 
and then continued during, subsidence of Santa 
Catalina Island.

The Miocene to early Pliocene sedimentary 
rocks around Santa Catalina Island also provide 
constraints on the maximum uplift and the sub-
aerial extent of the island at its Pliocene zenith. 
In most of our seismic profiles around north-
east Santa Catalina Island, the terrace package 
unconformably overlies the contact between 
igneous-metamorphic basement (Fig. 2, dashed 
orange line; Fig. 5, profiles 2610, 2202 uncon-
formity; Fig. 11C, gray area) and presum-
ably Miocene sediments (Fig. 5, profiles 2610, 
2202). The Miocene sediments are truncated at 
a surface that dips <5° seaward around the entire 
island. The contact between Miocene sediments 
and underlying basement (Fig. 11C, outline of 
gray area) has a roughly 1.5°N dip, consistent 
with the tilting direction of the island. This Mio-
cene-basement contact is overlain by the distal 
portion of marine-terrace sediments around 
most of the island, except along the Catalina 
Escarp ment, where marine-terrace sedi ments 
are truncated by the Santa Cruz–Catalina Ridge 
and Catalina faults. In map view, this contact 
has roughly the same shape as the terrace sedi-
ment package that overlies it, and it crudely 
marks the maximum subaerial extent of Santa 
Catalina Island before subsidence, i.e., roughly 
3× its current area. Thus, Santa Catalina Island 
has had roughly the same shape for at least 
1 m.y. (Fig. 11C).

Vertical Motion of the 
Pilgrim/Kidney Banks

The Pilgrim Banks terrace package con-
tains 13 successive sequence boundaries, and 
possibly many more that cannot be counted 
due to dissection by the Santa Cruz–Catalina 
Ridge fault. Chaytor et al. (2008) showed that 
the Pilgrim/Kidney Banks have tilted slightly 
to the northwest (<1°), possibly due to their 
under thrusting beneath the Western Transverse 
Ranges at the Channel Islands thrust (Fig. 1). 

Our seismic profiles crossing the Pilgrim/ 
Kidney Banks perpendicular to the direction 
of this tilt show that terrace back-edges on the 
southwest and northeast sides of the bank are 
at nearly equal elevations (Fig. 6, 2103, dashed 
lines). Due to their proximity, Santa Catalina 
 Island and Pilgrim Banks have experienced 
similar weather systems, oceanographic condi-
tions, and sea-level history. Hence, we can cor-
relate the terraces at Santa Catalina Island and 
Pilgrim Bank based on stratigraphic similarity 
between both platforms, in particular similar-
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ity of the MIS14/16 forced regressive wedge 
(Fig.  5, 2202, 2610; Fig. 6, 2103). This cor-
relation allows us to match sequences back to 
1.15 Ma (MIS 34; Fig. 10C), and it suggests that 
the deepest subaerial/subaqueous delta transi-
tion at Pilgrim Banks, now at ~300  m depth, 
has been subsiding for 1.15 m.y. We could find 
no correlation between modern depths of delta 
transitions and the paleo–sea-level curve that 
permitted a constant subsidence rate, and our 
data are best fit by an increase in subsidence 
from ~0.12 mm/yr to ~0.3 mm/yr at 400–350 ka 
(Fig. 10C). The larger Kidney Banks platform is 
surrounded on most sides by an intermittent ter-
race package that is too thin to permit detailed 
analysis or correlation to the Santa Catalina 
Island terrace package. However, no major tec-
tonic break has been identified between Pilgrim 
and Kidney Banks, and we suggest that they 
subsided together, with Pilgrim Banks being the 
last remnant of a once-larger island (~270 km2; 
Fig. 11C) that became submerged (during sea-
level highstands) by ca. 0.5 Ma (Fig. 11B).

Causes of Vertical Tectonic Motions in the 
California Continental Borderland

The late Miocene subsidence, Pliocene up-
lift, and post–mid-Pleistocene subsidence of 
Santa Catalina Island and the Pilgrim/Kidney 
Banks require multiple causes. The early Mio-
cene clockwise rotation of the Western Trans-
verse Ranges away from the Peninsular Ranges 
(Luyen dyk et al., 1985) and eruption of volumi-
nous volcanics created a proto–Santa Catalina 
Island (Legg, 1991; Crouch and Suppe, 1993). 
The contemporaneous extreme rifting of the 
 Inner Borderland set the stage for late Miocene 
thermal subsidence (Turcotte and McAdoo, 
1979) and accommodation of the Monterey For-
mation. However, the maximum thermal subsid-
ence rate today, 15 m.y. after cessation of rift-
ing, should be only ~0.05 mm/yr, based on the 
oceanic-lithosphere depth-age curve (Parsons 
and Sclater, 1977), which is far slower than the 
subsidence rates we demonstrate in this paper 
(up to 0.3 mm/yr; Fig. 10). In contrast, isostatic 
subsidence would likely be far faster than we 
observe, because Maxwell relaxation times es-
timated from glacio-isostatic rebound are short 
(0.0001–0.1  m.y.; Adams et  al., 1999; Dixon 
et al., 2004) compared to the ≥1 m.y. duration 
of subsidence of Santa Catalina Island and the 
Pilgrim/Kidney Banks.

We propose that the dominant control on up-
lift and subsidence of the Inner Borderland since 
Miocene time has been changes in the linkages 
of the anastamosing faults that are part of the 
greater San Andreas transform plate boundary. 
The most recent uplift of the Santa Cruz–Cata-

lina Ridge began by earliest Pliocene, probably 
when the Pacific–North America plate boundary 
jumped inland from the Inner Borderland at ca. 
6 Ma (Stock and Hodges, 1989). Transpression 
along reactivated Miocene extensional struc-
tures has been suggested as a mechanism for the 
uplift of Santa Catalina Island, and it is docu-
mented in folded Miocene sedimentary rocks 
on the southwest margin of the Santa Cruz–
Catalina Ridge (Legg et  al., 2004a;  Francis 
et al., 2018). A regional stress field seems to be 
required to explain the simultaneous uplift of 
the Pilgrim Banks and Santa Catalina Island on 
opposite sides of the Santa Cruz–Catalina Ridge 
fault (Fig. 11C), and we presume that the en-
tire Santa Catalina–Pilgrim Banks region was 
in transpression during Pliocene time due to the 
obliquity of the Santa Cruz–Catalina Ridge fault 
and the paleo–San Clemente fault to the relative 
plate-motion vector between the Pacific and 
North American plates (Fig. 1).

Our images of terrace sedimentary packages 
require subsidence since older than 1 Ma, and 
they also document continuous, albeit modest 
extension across the Catalina fault for most of 
this period (Fig. 11B). Profile 2503 (Figs. 4 
and 5) shows a normal-sense growth fault that 
clearly offsets the basement unconformity by 
~20 m, and it also shows evidence of rupture at 
the seafloor (Fig. 2, inset 1; Fig. 11A). Com-
parison with profile 2401 (Figs. 5 and 10B) 
suggests that the deepest offset terrace package 
was deposited in MIS 20, at ca. 800 ka, provid-
ing a minimum age for the onset of faulting. 
We propose that the transition from uplift to 
subsidence was triggered by a reduction of mo-
tion along the restraining segment of the Cata-
lina fault and increased slip on the southern San 
Pedro Basin fault northeast of Santa Catalina 
(Fig. 11A; Francis et al., 2018), thereby allow-
ing Santa Catalina Island to subside. The active 
Santa Cruz–Catalina Ridge fault zone contin-
ues to suppress subsidence southwest of Santa 
Catalina Island, while on the northeast side, sub-
sidence continues due to sedimentary loading 
on the flanks of the San Pedro and Santa Mon-
ica Basins, thereby accounting for the observed 
tilting of the island to the northeast. The sub-
sidence of Pilgrim Banks may represent a simi-
lar transfer of slip from the San Clemente fault 
(Legg, 1991), which runs west of the Pilgrim/
Kidney Banks, to the active East San Clemente 
fault where it merges with the Santa Cruz–Cata-
lina Ridge fault.

CONCLUSIONS

New high-resolution seismic-reflection and 
paleontological data show that the terrace 
package surrounding Santa Catalina Island 

contains at least 16 successive transgressive-
regressive sequences, requiring at least 16 sea-
level cycles and indicating a minimum age of 
1.15  Ma. Sediments recovered during ROV 
dives from subsided marine terraces, offshore 
Avalon, Santa Catalina Island, contain several 
extinct Pliocene to Middle Pleistocene shal-
low-water taxa confirming Quaternary sub-
sidence. The entirety of Santa Catalina Island 
has subsided between 0.08 and 0.27 mm/yr for 
at least 1.15 m.y., and tilted north at least 1.5° 
during this time. Pilgrim Banks has a similar 
succession of subsided terraces that we corre-
late to the terraces near Santa Catalina Island, 
yet it requires a variable subsidence rate to ex-
plain their depth distribution. We estimate that 
the Pilgrim Banks area has been subsiding at 
0.3 mm/yr for at least 0.35 m.y. but must have 
subsided no faster than 0.12 mm/yr between 
1.15 and 0.35  Ma. The subsided terraces in 
the Inner Borderland contain a detailed rec-
ord of lowstands and interstadials during the 
Quaternary that, with more precise determina-
tion of sub sidence rates, will provide valuable 
constraints on paleo–sea level and ultimately 
glacial ice volume and distribution. Even at the 
present state of knowledge, the essentially uni-
form subsidence rate for Santa Catalina Island 
that we demonstrate here must finally settle the 
century-old feud between subsiders and up-
lifters in favor of Quaternary subsidence.

DATA AVAILABILITY

ROV samples NA067-001–NA067-021 are ar-
chived at the Graduate School of Oceanography, Uni-
versity of Rhode Island. Grab samples and all fossils 
described in this paper are stored at Stanford Uni-
versity. Digital versions of the migrated seismic data 
and bathymetric compilations shown in this paper are 
available from the Stanford Digital Repository, https:// 
purl .stanford .edu /sk175bh2032.
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