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Comprehensive and quantitative assessment of human physical activity in daily life is valuable for healthcare, 
especially for those who suffer from obesity and neurological disorders or are at high risk of dementia. 
Common wearable devices, e.g., smartwatches, are insufficient and inaccurate for monitoring highly 
dynamic limb movements and assessing human motion. Here, we report a new wearable leg movement 
monitoring system incorporating a custom-made motion sensor with machine learning algorithm to 
perceive human motion accurately and comprehensively during diverse walking and running actions. 
The system enables real-time multimodal perceptions of personal identity, motion state, locomotion 
speed, and energy expenditure for wearers. A general law of extracting real-time metabolic energy from 
leg movements is verified although individual gaits show differences. In addition, we propose a novel 
sensing configuration combining unilateral lower leg movement velocity with its angular rate to achieve 
high accuracy and good generalizability while simplifying the wearable system. Advanced performances 
in personal identification (accuracy of 98.7%) and motion-state recognition (accuracy of 93.7%) are 
demonstrated. The wearable system also exhibites high-precision real-time estimations of locomotion 
speed (error of 3.04% to 9.68%) and metabolic energy (error of 4.18% to 14.71%) for new subjects 
across various time-varying conditions. The wearable system allows reliable leg movement monitoring and 
quantitative assessment of bodily kinematic and kinetic behaviors during daily activities, as well as safe 
identity authentication by gait parameters, which would greatly facilitate smart life, personal healthcare, 
and rehabilitation training.

Introduction

Physical activity refers to the bodily movement produced by 
skeletal muscles that require energy expenditure. Physical 
activity is closely related to human health, has been shown 
to affect mental health [1,2] and body mass index [3–5], and 
can be linked to various diseases [6,7]. Long-term physical 
sedentary lifestyle and inactivity have become one of the 
main causes of obesity [8], cardiovascular diseases [9,10], 
and premature death [11,12]. Daily activity plays an impor-
tant role in people’s health and physical rehabilitation of 
patients [13]. Because of this, many guidelines and policies 
have been implemented to promote human physical activity 
[14]. Human motion analysis involves multimodal informa-
tion oriented to various applications, e.g., human gait pattern 
tied to specific personal biometric identity [15], recognition 
of motion state and gait to analyze motor function [16–18], 
real-time estimations of locomotion speed [19], and meta-
bolic energy expenditure [20,21] to facilitate healthy and 
adaptive physical training.

Biometric technologies using fingerprints and facial fea-
tures have been widely used in personal identifications. Because 
of easy replicability, these technologies remain security prob-
lems [22,23]. In comparison, personal identification based on 
human gait [16,24] is one of the safest and the most reliable 
biometric recognition modalities [25,26] because individual 
gait characteristics are unique. It is almost impossible for a 
person to imitate or counterfeit the gait of others [27]. Common 
methods of gait recognition utilize computer vision [28], but 
the recognition accuracy is affected by clothing and environ-
mental conditions. Motion-state recognition [29–31] helps to 
understand the temporal characteristics of various kinds of 
activities, so as to make better activity configurations and 
build a better activity-specific model [32–34]. In our daily life, 
typical motion states are ambulation-type activities, such as 
level walking, level running, loaded walking, slope walking, 
and slope running, which account for the main proportion of 
physical activities [35]. Monitoring approaches using an accel-
erometer, magnetometer, gyroscope, or electromyography 
comprise the majority of methods to discern motion states 
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[36–39]. However, these devices suffer from serious drift 
and instability problems in capturing the long-term dynamic 
motions of limbs [40]. Locomotion speed [41] and meta-
bolic energy expenditure [42,43] are key metrics to objec-
tively characterize body kinematics and kinetics in human 
physical activity. The measurement of locomotion speed usu-
ally depends on Global Positioning System positioning that 
has significant errors in areas with obstacles and is unsuit-
able for tracking indoor activities [44]. Using self-contained 
devices to produce speed estimations independent of exter-
nal locators is crucial for personal daily use. As for meta-
bolic energy measurements, clinical respirometry [45–47] 
is a gold standard equipment but is not feasible for personal 
daily use due to its expensive and intrusive breath-based 
measurement [48,49]. Clearly, it would be useful to have a 
wearable activity and metabolism monitoring system with 
a simple, low-cost, and wearable setup. Step counts using 
pedometers, smartphones, or smartwatches are common ways 
to measure activity [50–52]; however, there are significant 
deviations between step counts and ground-truth motion 
energy. Existing wearable devices fail to monitor leg move-
ment that accounts for the vast majority of bodily activities 
and contributes the most to energy expenditure. Using iner-
tial measurement units (IMUs) [53,54] worn on the legs may 
be a solution. However, the metabolic estimation error of 
a wearable system using 2 IMUs worn on the shank and thigh 
is still larger than 13% during steady-state conditions and 
23% during time-varying conditions [20]. In addition, a lot 
of research works are devoted to monitoring human hand 
movements, and such systems are widely used in human–
computer collaboration [55,56], sign language recognition 
[57], and virtual reality [34]. Up to now, wearable, minia-
turized, point-of-care testing devices for comprehensively 
understanding human physical activity are of great signif-
icance but have not yet been thoroughly investigated.

Here, we present a new wearable leg movement monitoring 
system that can accurately and reliably monitor leg movements 
and allow a comprehensive analysis of human motion during 
various walking and running conditions. The wearable system 
worn on a lower leg (below the knee) is composed of a custom- 
made micro-tri-axis velocity sensor and a micro-IMU and is 
capable of detecting tri-axis motion velocities, accelerations, 
angular rates, and attitude angles of the lower leg. The leg 
motion parameters are fused using a machine learning algo-
rithm to implement real-time multimodal perceptions, includ-
ing recognizing personal identity and motion states, estimates 
of locomotion speed, and metabolic energy expenditure during 
various walking and running scenarios. To overcome drift and 
instability problems in capturing long-term dynamic motion 
of lower leg [58], for the first time, we propose an optimum 
sensing configuration for versatile tasks and prove that the com-
bination of single shank movement velocity and angular rate is 
the best sensing configuration for achieving high accuracy 
while simplifying the wearable system. In addition, we verify 
individual gaits exhibit significant differences that are used to 
implement personal identification and motion-state recogni-
tion. Besides, we propose and verify an interesting indication 
that the kinetic-energy-related locomotion speed and metabolic 
rate can be extracted from the leg movements regardless of 
individual gait differences. The proposed wearable system has 
good generalizability that can accurately estimate the real-time 
locomotion speeds and metabolic energy expenditures for new 

subjects across various motion conditions without relying on 
subject-specific calibration, which is essential for practical 
application and large-scale deployment.

Results and Discussion

Overview of the wearable system
As a unique human biometric identity, lower limb move-
ment reflects the individual personal manner of walking and 
running. We develop a wearable leg monitoring system to 
detect lower limb movements. Through a motion data fusion 
based on deep learning, the wearable system can report per-
sonal information in real time during walking and running 
as shown in Fig. 1A, e.g., “John is running with a locomotion 
speed of 2.5 m/s and a metabolic energy expenditure of  
668 W. Anna is running at the same speed with a metabolic 
expenditure of 582 W”. With this wearable system, people 
can partake in a “smart” life [59,60], benefiting from safe 
and easy identity authentication in accessing living facilities 
and quantitatively assessing daily activity for healthy exer-
cise management (Fig. 1B). A real-time demonstration is 
shown in Movie S1.

Here, the lower limb movement is detected using our 
homemade wearable device, which is composed of a custom 
microvelocity sensor and a commercial micro-IMU (LSM9DS1, 
STMicroelectronics). The microvelocity sensor is made up of 
2 microflow sensors placed orthogonally to measure tri-axis 
motion velocity by detecting the motion-induced surface flow 
vectors. As shown in Fig. 1C, the microflow sensor consists 
of 3 center platinum resistors (Rh1, Rh2, and Rh3) that are elec-
trically heated and work as the temperature sensors of them-
selves for detecting the motion-induced surface flow based on 
convective heat transfer, while the circular platinum resistors 
(Rc1, Rc2, and Rc3) work as the ambient temperature sensors. 
The thin-film platinum resistors (100 nm in thickness) are 
deposited and patterned on a polymide substrate by a lift-off 
micromachining process. The combination of 3 thermistors 
is used to detect simultaneously the magnitude and the 2- 
dimensional direction of motion velocity (Vf) (Fig. 1D). By 
combining 2 flow sensors placed orthogonally (shown in Fig. 
1E), tri-axis motion velocity can be figured out by making 
data fusion of 2 flow sensors. To accurately measure the tri-
axis velocity of leg movement in real time during walking 
and running, we propose a long short-term memory (LSTM) 
neural network model to make data fusion and predict the 
dynamic motion velocity. The detailed design and testing 
results of the velocity measurement are described in Note S1 
and Fig. S1. The results evidence the tri-axis motion velocity 
of the limb can be accurately measured in real time. The com-
mercial IMU is used to detect tri-axis acceleration and tri-axis 
angular rate. The motion acceleration and attitude angles of 
the limb are figured out by a Kalman filter [58]. The microve-
locity sensor and the IMU are sampled and filtered by an inte-
grated microcontrol unit and then transmitted wirelessly to an 
external terminal through Bluetooth for making data fusion to 
figure out tri-axis motion velocity, acceleration, angular rate, 
and attitude angle in real time. Therefore, the wearable device 
worn on the shank capably detects tri-axis motion velocity (v), 
acceleration (a), angular rate (w), and attitude angle (θ) of 
the shank during walking and running (Fig. 1F). The detected 
shank motion parameters are configured and fused to recog-
nize personal identity traits and motion state and estimate 
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locomotion speed and metabolic energy expenditure in real 
time by a data-driven model based on deep learning (Fig. 1G).

In terms of motion data acquisition, we conducted a series 
of experiments and collected the motion dataset of 16 subjects 
(subjects 1 to 16) during their walking and running on a level 

treadmill (called level walking and level running), 6 subjects 
(subjects 1 to 6) during walking on a level treadmill and car-
rying a backpack of 12 kg (called loaded walking), and 6 
subjects (subjects 1 to 6) during walking and running on a 
sloped treadmill (called slope walking and slope running). All 

Fig. 1. The wearable leg motion monitoring system and its multimodal functions. (A) The wearable system monitored and analyzed human motion in real time. The multimodal 
functions of the wearable system included identity recognition, motion state identification, and estimations of locomotion speed and metabolic energy expenditure. (B) The 
wearable system could enable a “smart” life with automatic identity authentication for safe and easy access to living facilities and understanding daily activity for healthy 
exercise management. (C) View of a microflow sensor. (D) Deflection of the thermal field caused by motion-induced surface flow. (E) Design and configuration of the wearable 
device. (F) Signal flow of the wearable device for deducing tri-axis motion velocity, acceleration, angular rate, and attitude angle. (G) The wearable system was worn on the 
shank of one leg. The detected shank movement data were fused to recognize the personal identity and motion states and estimate the locomotion speed and metabolic 
energy expenditure in real time by a deep learning neural network.
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experiments were performed twice. The subjects removed and 
rewore the monitoring device between 2 experiments to validate 
the feasibility and generalization across different wearing.

Recognition of personal identity and motion state
As mentioned above, the human gait pattern of leg movements 
is unique and hard to replicate and is potentially a safer biome-
tric identifier. Figure 2A shows the characteristic scatter dia-
grams of the gait cycles of 6 subjects (subjects 1 to 6) during their 
walking and running. We selected the maximum/minimum 
shank angle and gait cycle length as the gait features to show the 
significant differences among individuals. It was seen that each 
person had a unique gait pattern that could be a biometric iden-
tifier. We also observed the gait pattern varied with the motion 
states as shown in Fig. 2B. Through analyzing the gait pattern 
of leg movements, the motion states could be also identified.

To perform personal identification, we built an LSTM neu-
ral network as a recognition model, considering its capability 
of learning long-term dependencies for sequence modeling 
[61,62]. The input parameter configuration of the recognition 
model was crucial and needed to be optimized according to 
both the accuracy and simplicity of the wearable system. We 
compared different input configurations that used: all motion 
parameters of bilateral shanks on both legs (TwoLegs), all motion 
parameters of a single unilateral shank, and a subset of motion 
parameters of the unilateral shank (more detailed parameter 
definitions were described in Table S1). Figure 2Ci shows the 
results of the input parameter optimizations for the personal 
identification model. Figure 2D schematizes the structure of 
the LSTM neural network model. The model consisted of an 
LSTM layer and a classification layer (fully connected layer 
and softmax output). The number of neurons in the LSTM 
layer was optimized as 200. The time length of input data was 
optimized as 2 s (Table S3).

The limb motion dataset of 16 subjects at walking and run-
ning speeds of v1 (0.56, 0.83, 1.11, 1.39, 1.67, 1.94, 2.22, 2.5, 
and 2.78 m/s, respectively) in the first experiment was used to 
train the network model, and the limb motion dataset at dif-
ferent locomotion speeds of v2 (0.69, 0.97, 1.25, 1.53, 1.81, 2.08, 
2.36, and 2.64 m/s, respectively) in the second experiment was 
used to test the trained model. The speeds in the training and 
test datasets were different to ensure feasibility across different 
speeds. It could be seen from Fig. 2Ci that the input parameter 
configuration (v-w) with motion velocity (v) and angular rate 
(w) of a single shank reached the highest accuracy compared 
to other parameter configurations. It was noted that the accu-
racy of both legs (TwoLegs) shows an unobvious advantage 
compared to that of a single shank (v-w). The configuration 
with the motion parameters of a single shank could simplify 
the wearable system and reduce the cost and the alignment 
complexity of the device. The personal identification result was 
shown in Fig. 2Ei, and it reached a high accuracy of 98.7% in 
recognizing 16 subjects.

Furthermore, we conducted the motion-state recognition 
for 6 subjects (subjects 1 to 6) during various motion states, 
including level walking and running, slope walking and slope 
running, and loaded walking, respectively. The limb motion 
dataset of 6 subjects at speeds of v1 in the first experiment was 
used to train the network model, and the limb motion dataset 
at different locomotion speeds of v2 in the second experiment 
was used to test the model. We also preoptimized the input 
parameters of the motion-state recognition model as shown in 

Fig. 2Cii and determined the best parameter configuration was 
the combination of the motion velocity and angular rate (i.e., 
v-w) of a single shank. Figure 2Eii indicated that an overall 
accuracy of 93.7% was reached in recognizing 5 different motion 
states for 6 subjects.

Real-time estimation of locomotion speed
Although individual gaits showed significant differences as 
mentioned above, an interesting finding is that the kinetic- 
energy-related locomotion speed and metabolic rate could be 
extracted from the lower limb movements regardless of indi-
vidual differences. To estimate the locomotion speed in real 
time using the wearable system, we built an LSTM neural 
network as shown in Fig. 3A. We optimized the input param-
eters of the speed estimator based on a criterion of minimiz-
ing the error of estimated locomotion speed. Figure 3A showed 
that the optimum input configuration with the motion veloc-
ity and angular rate (v-w) of one shank reached the minimum 
mean absolute percentage error (MAPE) of 3.28%. Therefore, 
we utilized the v-w parameters as the inputs of the speed esti-
mator. In the above optimization experiment, the limb motion 
dataset of 16 subjects at the walking and running speeds of 
v1 in the first experiment was used to train the estimator, and 
the limb motion dataset at the different walking and running 
speed of v2 in the second experiment was used to test the 
estimator. To validate the generalization of the speed estima-
tor for new subjects across new speeds and new motion states, 
we conducted the following experiments.

First, the motion dataset of 12 subjects during level walking 
and running in the first experiment was used to train the esti-
mator, and the motion dataset of the other 4 new subjects in 
the second experiment was used to test the estimator. Figure 3B 
shows one example of the estimation results that the data-driven 
model trained from 12 subjects (subjects 5 to 16) was used to 
estimate 4 new subjects (subjects 1 to 4). The cross-validation 
results for other permutations of subjects are shown in Fig. S2. 
The results indicated that the level walking and running speed 
of new subjects could be estimated to reach an MAPE of 3.04 
to 5.05% (3.96% on average) and a root mean square error of 
less than 0.4 m/s using the estimator without model recalibra-
tion. It showed good generalizability of the speed estimator for 
new subjects.

Second, the training dataset and test dataset were collected 
at different locomotion speeds to further validate the speed 
generalization of the estimator. Specifically, the motion dataset 
of 12 subjects (subjects 5 to 16) at walking and running speeds 
of v1 in the first experiment was used as the training dataset, 
and the motion dataset of 4 new subjects (subjects 1 to 4) at 
the locomotion speed of v2 in the second experiment was used 
to test the estimator. In this experiment, the MAPE of the esti-
mated locomotion speed reached 5.06 to 6.74% (5.78% on 
average; Fig. 3C; the cross-validation results for other permu-
tations of subjects were shown in Fig. S3).

Furthermore, we evaluated the generalizability of the speed 
estimator for new motion states. We used the motion dataset 
of 10 subjects (subjects 7 to 16) during level walking and run-
ning conditions in the first experiment as the training dataset 
and tested the trained estimator for 6 new subjects (subjects 1 
to 6) during their loaded walking, slope walking, and slope 
running in the second experiment. The MAPE of the estimated 
locomotion speed for the new subjects across new motion states 
reached 5.18% (Fig. 3D).
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Fig. 2. Recognition of personal identity and motion state by monitored shank movements. (A) Characteristic scatter diagrams of the gait cycles of 6 subjects. Gait characteristics 
during walking and running showed significant differences across subjects. (B) Characteristic scatter diagrams of the gait cycles of one subject during various motion states. 
The gait characteristics of one subject showed significant differences across various motion states. (C) (i) Recognition accuracies of personal identity using different input 
parameter configurations. (ii) Recognition accuracies of motion state using different input parameter configurations. In (i) and (ii), the best configuration with the highest 
accuracy was highlighted using a darker color. (D) Schematic diagram of the LSTM neural network model used for personal identification and motion-state recognition. 
(E) (i) Recognition test confusion matrix with 7,500 groups of the test dataset for recognizing 16 subjects. (ii) Recognition test confusion matrix with 6,000 groups of the 
test dataset for identifying 5 types of motion states; each row and column represented an instance in an actual category and a predicted category, respectively, and the 
diagonal values represented correct percentage results for each category. The color bar represented the predicted accuracy.
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Fig. 3. Locomotion speed estimation using the wearable system. (A) Results of speed estimation using different input parameter configurations and schematic diagram of 
LSTM-based neural network model as speed estimator. The best configuration with the minimum estimation error was highlighted in a darker blue. (B) Speed estimations for 
new subjects. The actual speed referred to the treadmill speed. A dataset of 4 new subjects was used to calculate the error bars. (C) Speed estimations for new subjects at 
new locomotion speeds. A dataset of 4 new subjects was used to calculate the error bars. (D) Speed estimations for new subjects across new motion states. A dataset of 6 new 
subjects was used to calculate the error bars. (E) Speed estimations for new subjects across new motion states at new locomotion speeds. A dataset of 6 new subjects was used 
to calculate the error bars. (F) Time-varying speed estimations for new subjects across new motion states. A dataset of 6 new subjects was used to calculate the error bars.

https://doi.org/10.34133/research.0214
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Finally, we comprehensively evaluated the generalizability 
of the locomotion speed estimator across more complex con-
ditions, for new subjects during new motion states at new 
motion speeds. The motion dataset of 10 subjects (subjects 7 
to 16) during level walking and running at the speed of v1 in 
the first experiment was used as the training dataset, and the 
trained estimator was tested for 6 new subjects (subjects 1 to 6) 
across various conditions (level walking, level running, loaded 
walking, slope walking, and slope running) at a speed of v2 in 
the second experiment. The results were shown in Fig. 3E, and 
the MAPE was estimated to be 7.34%.

To meet the requirement of real-time monitoring during 
time-varying conditions, we further test the time-varying per-
formance of the speed estimator. Figure 3F showed a contin-
uously estimated locomotion speed using the trained estimator 
in Fig. 3E for 6 new subjects (subjects 1 to 6) during a time- 
varying level walking and running (0.56 to 2.78 m/s), a 
time-varying loaded walking (0.56 to 1.53 m/s), and a time- 
varying slope walking and running (0.56 to 1.94 m/s), respec-
tively. It could be seen that the wearable system exhibited good 
real-time locomotion speed estimation for new subjects across 
various time-varying conditions and the maximum MAPE of 
the estimated locomotion speed was less than 10%.

Real-time estimation of metabolic  
energy expenditure
Besides locomotion speed, metabolic rate is another key metric 
for assessing physical motor function. Daily energy expenditure 
during common activities of walking and running accounts for 
the majority of the body’s daily calorie consumption. Leg move-
ments undertake major movements during walking and running. 
Therefore, the leg movement parameters are positively correlated 
with metabolic energy expenditure. However, an analytic rela-
tionship between the leg movement parameters and the meta-
bolic energy expenditure is hard to be established because of 
complex leg dynamic behavior. Therefore, we propose a machine 
learning method to estimate the metabolic energy from the 
detected leg movement parameters in real time. To estimate the 
metabolic energy expenditure during walking and running, we 
built an LSTM neural network as shown in Fig. 4A. We optimized 
the input parameters of the metabolic energy estimator based 
on a criterion of minimizing the error of estimated metabolic 
expenditures. In the optimization experiment, the motion data-
set of 16 subjects during the level walking and running at the 
speed of 1.25, 1.53, 1.94, and 2.50 m/s in the first experiment was 
used as the training dataset, and their motion dataset in the sec-
ond experiment was used for the test. The ground-truth meta-
bolic energy expenditure was measured synchronously using a 
spiroergometry system in the experiments. Figure 4A showed 
that the optimum parameter configuration of v-w reached 
the minimum MAPE of 4.15% for the metabolism estimator. 
Therefore, we utilized the v-w parameters as the inputs of the 
metabolism estimator hereinafter.

To validate the generalizability of the metabolism estimator 
for new subjects, we conducted the following experiments. The 
motion dataset of 12 subjects (subjects 5 to 16) during their 
level walking and running at the speed of 1.25, 1.53, 1.94, and 
2.50 m/s in the first experiment was used as the training data-
set, and the dataset of 4 new subjects (subjects 1 to 4) in the 
second experiment was used for the test. The test results were 
shown in Fig. 4B, and the cross-validation results for other 
permutations of subjects were shown in Fig. S4. The MAPE of 

the metabolic energy estimation for 4 new subjects during their 
level walking and running reached 6.23 to 7.73% (7.2% on aver-
age). Furthermore, more motion states including level walking 
and running, loaded walking, slope walking, and running were 
also involved. Figure 4C and Fig. S5 showed the estimation 
results for new subjects across various motion states, reaching 
an MAPE of 6.20 to 9.78% (8.45% on average), which was less 
than the error of state-of-the-art methods (e.g., 13%) [20].

It was noted that the above experiments were conducted 
under steady-state conditions. The walking or running activity 
during steady-state conditions was kept at each specific speed 
for 5 min. To avoid fatigue, each subject took a rest for at least 
5 min between conditions. To test the time-varying perfor-
mance of the energy expenditure estimator, 16 subjects per-
formed long-term walking and running at time-varying speeds. 
Each subject increased his speed from 0.56 to 2.78 m/s with an 
ascending interval of 0.14 m/s, and each speed lasted 0.5 min. 
The whole period of the time-varying condition continued for 
8.5 min. To validate the generalizability across individuals, the 
time-varying motion dataset of 12 subjects (subjects 5 to 16) 
in the first experiment was used as the training dataset, and the 
dataset of 4 new subjects (subjects 1 to 4) during the time-varying 
condition in the second experiment was used as the test dataset. 
Figure 4D shows the real-time estimated metabolic energy of 
the 4 new subjects during the time-varying level walking and 
running. Other cross-validation results were shown in Figs. 
S6 to S9. The MAPE of metabolic estimation using the wearable 
system during the time-varying conditions was 4.66 to 12.08% 
(7.57% on average).

Furthermore, to test metabolic estimates during various 
time-varying conditions, the dataset of 4 subjects (subjects 3 
to 6) during time-varying loaded walking (0.56 to 1.53 m/s), 
slope walking, and running (0.56 to 1.94 m/s) was used as the 
training dataset, and the dataset of 2 new subjects (subjects 
1 and 2) was used as the test dataset. Figure 4E showed the 
real-time estimated metabolic energy during the time-varying 
loaded walking, slope walking, and running for new subjects. 
Other cross-validation results were shown in Figs. S10 to S12. 
The wearable system achieved an MAPE of 4.18 to 14.71% 
(8.76% on average) in estimating real-time metabolic energy 
for new subjects across all time-varying conditions, signifi-
cantly less than the error of state-of-the-art methods (e.g., 
23%) [20]. The wearable system performed accurate estimates 
of time-varying metabolic energy expenditure and achieved 
good generalizability for new subjects.

Multimodal assessments of human motion using the 
wearable leg movement monitoring system
To showcase the functions of the proposed wearable system in 
our daily life, we built a system (Fig. 5A) consisting of our leg 
movement monitoring device worn on the shank of a subject 
and an intelligent terminal (a personal computer as an example) 
to implement automatic identity authentication, human motion 
analyses, and reports in real time. The shank motion of the 
subject was monitored by the wearable device, the motion data 
were transmitted wirelessly to the intelligent terminal, and the 
terminal automatically authenticated personal identity accord-
ing to his/her gait in 2 s. After the user was authenticated suc-
cessfully, the intelligent terminal started analyzing his/her leg 
motion data to recognize the motion state and estimate the 
walking/running speed and metabolic energy expenditure in 
real time. The hardware schematic diagram of the system setup 
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Fig. 4. Metabolic energy expenditure estimation using the wearable system. (A) Results of metabolic energy estimation using different input parameters and schematic diagram 
of LSTM-based neural network model as energy estimator. The best configuration with the minimum estimation error was highlighted using a darker color. (B) Metabolic energy 
expenditure estimations for 4 new subjects during level walking and running. The actual energy expenditure refers to the ground-truth expenditure measured by the respiratory 
oxygen consumption meter. A dataset of 4 new subjects was used to calculate the error bars. (C) Metabolic energy expenditure estimation for 2 new subjects during various 
motion states (level walking and running, slope walking and running, and loaded walking). A dataset of 2 new subjects was used to calculate the error bars. (D) Time-varying 
metabolic energy expenditure estimations for new subjects during long-term time-varying walking and running. (E) Time-varying metabolic energy expenditure estimations 
for new subjects during loaded walking (left), slope walking, and running (right). In (D) and (E), the red and blue error bars were calculated from the dataset of subject 1 over 
the time. The purple error bars were calculated from the dataset of subjects 1 to 4 over the time.
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was shown in Fig. 5B. The wearable system performed wireless 
communication with the intelligent terminal through Bluetooth, 
and the intelligent terminal carried out the online multimodal 
assessments of human motion and displayed the assessment 
results on a graphical user interface or reported the results by 
voice.

Figure 5C showed an example of the assessment results of the 
subject in the walking/running experiment. In the first 60 s, the 
subject walked at the speeds of 1.11 and 1.53 m/s consecutively 
and then speeded up to run at the speed of 1.94 m/s during 60 
to 90 s, and, finally, the subject slowed down to stop during 90 
to 105 s. Figure 5Ci showed the pie charts indicating the pro-
portion of various motion states during different times. Figure 
5Cii showed the real-time locomotion speed and metabolic 
energy expenditure during walking and running. The cumulative 
metabolic energy during the walking and running was calculated 
from the estimated metabolic rate (detail in Materials and 
Methods). The dynamic process of the above experiment was 

shown in Movie S1. The experiment demonstrated the wearable 
system was able to continuously monitor the leg movements and 
analyze the motion data in real time to recognize personal iden-
tity and motion states and accurately estimate motion energy 
during walking and running.

According to the results, the movement data of unilateral 
shank, without data from both legs, were sufficient to charac-
terize the kinematics and kinetics of the whole body, which 
simplified the wearable system. The combination of the motion 
velocity and angular rate (v-w) of a single shank was proved 
to be the best input configuration of the fusion models for ver-
satile perception tasks, including recognizing personal identity 
(achieving a recognition accuracy of 98.7% shown in Fig. 2Ci), 
identifying motion states (reaching an accuracy of 93.7% shown 
in Fig. 2Cii), estimating locomotion speed (reaching an error of 
3.28% in Fig. 3A), and estimating metabolic energy expenditure 
(achieving an error of 4.15% shown in Fig. 4A). However, using 
accelerometer-detected acceleration gained lower accuracies 

Fig. 5. Demonstration of human motion analyses using the wearable system. (A) System setup and experimental scene. A subject walked/ran on a treadmill. A wearable leg 
motion monitoring device was worn on the shank and the intelligent terminal received the motion data through Bluetooth and performed the motion analyses in real time. 
The workflow involved automatic identity authentication and real-time motion analyses. (B) Hardware schematic diagram of the system. The wearable leg monitoring device 
comprised a homemade microflow sensor, an IMU, a signal conditioning circuit, an microcontrol unit, and a Bluetooth module. The intelligent terminal performed deep-learning-
based analyses and displayed or reported the results. (C) The results of the multimodal analysis. (i) Proportion of various motion states during different times. (ii) Real-time 
monitoring of the locomotion speed, metabolic energy expenditure, and cumulative metabolic energy.
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shown in Figs. 2C, 3A, and 4A. The results concluded that the 
shank motion velocity was preferable to the accelerometer- 
detected acceleration in assessing human motor function. The 
reason was that the accelerometer detected the total acceleration 
of gravity and motion acceleration and was also suffered from 
shock and vibration interference during walking and running. 
To derive the velocity and attitude angle, the typical integral 
calculation of the accelerometer-detected acceleration would 
result in significant errors. In this work, we utilized a microflow 
sensor to detect a motion-induced surface flow for measuring 
limb motion velocity. The measured motion velocity could accu-
rately estimate the motion acceleration, being resilient to gravity 
and shock interference. Therefore, the shank angle could be 
estimated without the necessity of integral calculations and thus 
achieved drift-free measurements.

The developed leg movement monitoring system was com-
petent in human motor function assessment in daily life. People 
could monitor their daily activities, comprehensively under-
stand their exercise energy expenditures, and make motor 
management of daily activity for preventing obesity or cardi-
ovascular disease and rehabilitation training. With the real-
time monitoring of leg movement, people could make daily 
living seamless and convenient, such as safe and easy access to 
living facilities by personal gait ID and easy interaction with 
smart devices. It would be also useful and securer for organi-
zations or companies to adopt personal gaits into their identity 
authentication systems.

This work would also provide effective approaches for 
researchers in other fields. Medical researchers could use the 
wearable system to study the correlation between motion 
indicators and health problems and provide health guidance 
on physical activity. Engineers might consider incorporating 
velocity sensors into the configuration of human motion 
monitoring systems to acquire more accurate and reliable 
measurements. Researchers in ergonomics and biomechanics 
could study the gait patterns for detecting abnormal gaits 
and guiding athletic competition and daily training. In phys-
iotherapy, accurate gait analysis could guide rehabilitation 
programs to improve outcomes.

Conclusion
We proposed a new wearable leg movement monitoring system 
for accurately detecting leg movements and quantitively assess-
ing motions during human walking and running. The shank 
movement parameters were fused to implement real-time mul-
timodal perceptions on personal identification, motion state 
recognition, and estimates of locomotion speed and metabolic 
energy during steady-state and time-varying motion condi-
tions. We proposed an optimum configuration of the sensing 
parameters to maximize the accuracies of feature recognition 
and energy estimation while simplifying the wearable system. 
The experimental result showed that the combination of motion 
velocity and angular rate of one shank achieved the most accu-
rate performances for versatile tasks. It also validated the 
reliability and superiority of the wearable system in terms of 
multimodality, accuracy, and long-term stability. In future 
work, we plan to perform more experiments on more subjects 
across more human activities to further improve the general-
ization and robustness of the system. We also plan to extend 
the method in the future to diagnose motor function injury 
and implement exoskeleton control.

Materials and Methods

Motion parameters and subject experiments on  
the treadmill
Sixteen healthy subjects (subjects 1 to 16) participated in the 
motion experiments. They (n = 16 men; age, 25.2 ± 2.9 years; 
height, 1.74 ± 0.05 m; body mass, 67.3 ± 7.4 kg) walked or ran 
on a treadmill (R1, King Smith, China). The locomotion speeds 
were set by the treadmill. The motion states in the experiments 
were described as follows:

• � Level walking: All subjects experienced level walking at 
a steady-state speed of 1.25 and 1.53 m/s, respectively, 
each speed lasting for 5 min. All subjects experienced a 
time-varying walking at a step-by-step ascending speed 
(0.56, 0.69, 0.83, 0.97, 1.11, 1.25, 1.39, and 1.53 m/s suc-
cessively, each speed lasted 0.5 min).

• � Level running: All subjects experienced level running at 
a steady-state speed of 1.94 and 2.50 m/s, respectively, 
each speed lasted for 5 min. All subjects experienced a 
time-varying running at a step-by-step ascending speed 
(1.67, 1.81, 1.94, 2.08, 2.22, 2.36, 2.50, 2.64, and 2.78 m/s 
successively, each speed lasted 0.5 min).

• � Loaded walking: 6 subjects (subjects 1 to 6) experienced 
loaded walking. During the loaded walking, the subject 
carried a 12-kg backpack. The walking speed was set the 
same as that during the level walking state.

• � Slope walking: 6 subjects (subjects 1 to 6) experienced 
slope walking on a sloped treadmill. The angle of the 
slope was 7°. The walking speed was set the same as that 
during the level walking state.

• � Slope running: 6 subjects (subjects 1 to 6) experienced 
slope running at a speed of 1.94 m/s on a sloped tread-
mill for 5 min. The angle of the slope was 7°. Six subjects 
experienced the time-varying running at a step-by-step 
ascending speed (1.67, 1.81, and 1.94 m/s successively, 
each speed lasting 0.5 min).

All motion states were tested twice. The subject removed 
and rewore the monitoring device between 2 experiments to 
validate the feasibility and the generalization across different 
wearing. One experiment was used for training the network 
model, and another experiment was used for testing the trained 
model. Between the 2 experiments, the subjects removed and 
rewore the devices, resulting in the wearing difference for eval-
uating the robustness of the trained network model across 
different wearing. The detailed experimental conditions were 
described in Table S2. During the above experiments, all sub-
jects wore a spiroergometry system (METALYZER 3B, CORTEX 
Biophysik Co. Ltd.) to measure their metabolic energy expend-
iture synchronously.

Data acquisition and data sample processing
The motion velocity, acceleration, angular rate, and angle of 
one shank were detected using our custom-made wearable 
devices at a sampling frequency of 100 Hz. For personal iden-
tification and motion-state recognition, the time length of 
input data was optimized as 2 s. The 2-s window of data was 
shifted and updated in real time. For the real-time motion speed 
estimation and the real-time metabolic energy expenditure 
estimation, the time length of the input data was optimized as 
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4 s. The 4-s window of data was shifted and updated in real 
time. The detailed optimization processes were described in 
Fig. S13 and Table S3.

Hardware and software design of the  
wearable device
The wearable device weighed 69.1 g and had a power consump-
tion of about 450 mW. A low-power Bluetooth module (DA14580, 
Dialog Semiconductor) was used for wireless data transmis-
sion. A rechargeable lithium battery was used for the power 
supply. The device could work continuously for more than 3.5 h 
using a 600-mAh lithium battery. Data processing, calcula-
tion, and storage were performed on the MATLAB R2022a plat-
form. The intelligent terminal software was designed using NI 
LabVIEW2018.

Accuracy calculation of personal identification and 
motion state recognition
For personal identification, the accuracy of one subject (e.g., 
subject 1) can be calculated as follows:

where N1 refers to the number of test samples for subject 1 and 
n1 refers to the number of samples correctly identified as subject 
1. Similarly, the accuracy of subjects 2 to 16 can be calculated.

The overall accuracy of personal identification can be cal-
culated as follows:

where N2, N3, …, N16 refer to the number of test samples for 
subjects 2 to 16 and n2, n3, …, n16 refer to the number of samples 
correctly identified as subjects 2 to 16.

Similarly, the accuracy of motion-state recognition can also 
be calculated.

Calculation of the cumulative metabolic energy
The cumulative metabolic energy (in kilocalories) was denoted 
as Ec and calculated by:

where Ep was the estimated metabolic rate (in watts per kilo-
gram) and W was the weight of the subject.

Experiments performed in this study involving human par-
ticipants were approved by the Institution Review Board of 
Tsinghua University (no. 20180009). In addition, informed 
consent was obtained from human subjects to use their images 
and conduct the experiments described in this paper.
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