MecaWind Std v2.2.7.5 per ASCE 7-10

Developed by MECA Enterprises, Inc. Copyright www.mecaenterprises.com

```
: 1/6/2018
                                                                                                                      : JobNo
                                                                                             Project No.
Date
Company Name : True
                                                                                             Designed By
                                                                                                                       : Engineer
                                                                                             Description : Description
Address : Address
City
State
                         : City
                                                                                             Customer Name : Customer
                                                                                             Proj Location : Location
                         : State
File Location: C:\Users\William J Collins\AppData\Roaming\MecaWind\Default.wnd
Directional Procedure Simplified Diaphragm Building (Ch 27 Part 2)
         Basic Wind Speed(V) = 170.00 mph
Structural Category = II

        Structural Category
        =
        II
        Exposure Category
        =
        B

        Natural Frequency
        =
        N/A
        Flexible Structure
        =
        No

        Importance Factor
        =
        1.00
        Kd Directional Factor
        =
        0.85

        Alpha
        =
        7.00
        Zg
        =
        1200.00 ft

        At
        =
        0.14
        Bt
        =
        0.84

        Am
        =
        0.25
        Bm
        =
        0.45

        Cc
        =
        0.30
        1
        =
        320.00 ft

        Epsilon
        =
        0.33
        Zmin
        =
        30.00 ft

        Pitch of Roof
        =
        6:12
        Slope of Roof (Theta)
        =
        26.57 Deg

        h: Mean Roof Ht
        =
        24.75 ft
        Type of Roof
        =
        GABLED

        RHt: Ridge Ht
        =
        32.50 ft
        Eht: Eave Height
        =
        17.00 ft

        OH: Roof Overhang at Eave
        2.00 ft
        Overhead Type
        =
        OH w/ soffit

        Bldg Length Along Ridge
        =
        84.00 ft
        Bldg Widt
          Structural Category
                                                                        ΙΙ
                                                                                                  Exposure Category
Gust Factor Calculations
          Gust Factor Category I Rigid Structures - Simplified Method
          Gust1: For Rigid Structures (Nat. Freq.>1 Hz) use 0.85
                                                                                                                                    = 0.85
         Gust Factor Category II Rigid Structures - Complete Analysis
                                                                                                                                     = 30.00 ft
         Zm:
                      0.6*Ht
                       Cc*(33/Zm)^0.167
         1 zm:
                                                                                                                                           0.30
                                                                                                                                    = 309.99 ft
         Lzm:
                       1*(Zm/33)^Epsilon
                        (1/(1+0.63*((B+Ht)/Lzm)^0.63))^0.5
                                                                                                                                    = 0.89
                                                                                                                                         0.86
          Gust2: 0.925*((1+1.7*1zm*3.4*Q)/(1+1.7*3.4*1zm))
          Gust Factor Summary
         Not a Flexible Structure use the Lessor of Gust1 or Gust2
                                                                                                                               = 0.85
Table 26.11-1 Internal Pressure Coefficients for Buildings, GCpi
                                                                                                                                     = +/-0.18
         GCPi : Internal Pressure Coefficient
Topographic Adjustment
          0.33*z
                                                                                                                                               1.00
```

```
0.33*z = 1.00 

Kzt (0.33*z): Topographic factor at elevation 0.33*z = 1.00 

Vtopo: Adjust V per Para 27.5.2: V * [Kzt(0.33*z)]^0.5 = 170.00 mph
```

MWFRS Diaphragm Building Wind Pressures per Ch 27 Pt 2

All pressures shown are based upon ASD Design, with a Load Factor of .6

Elevation

Gabled Roof


```
WALL PRESSURES PER TABLE 27.6-1
```

L/B: Bldg Dim in Wind Dir / Bldg Dim Normal to Wind Dir 0.69 = 17.00 ft = 24.62 psf h: Height to top of Windward Wall
ph: Net Pressure at top of wall (windward + leeward) 24.62 psf = 24.45 psf p0: Net Pressure at bottom of wall (windward + leeward)

ps: Side wall pressure acting away from wall = .54 * ph pl: Leeward wall pressure acting away from wall = .38 * ph= -13.29 psf = -9.35 psf = 15.26 psf = 15.10 psf pwh: Windward wall press @ top acting toward wall = ph-pl pw0: Windward wall press @ bot acting toward wall = p0-pl

ROOF PRESSURES PER TABLE 27.6-2

Mean Roof Height 24.750 ft n: Mean Roof Height
Lambda: Exposure Adjustment Factor 0.702 Slope: Roof Slope = 26.57 Deg

Zone	Load Case1 psf	Load Case2 psf		
1	-14.42	11.33		
2	-18.02	-8.63		
3	-27.66	.00		
4	-24.65	.00		
5	-20.23	.00		

Note: A value of '0' indicates that the zone/load case is not applicable.

ROOF OVERHANG LOADS (FIGURE 27.6-3):

LOAD CASE 1:

Povh1: Overhang pressure for zone 1 Povh3: Overhang pressure for zone 3 = -10.82 psf = -20.75 psf

LOAD CASE 2:

Povh1: Overhang pressure for zone 1 8.50 psf Povh3: Overhang pressure for zone 3 .00 psf

Notes - Normal to Ridge

MWFRS Pressures for Wind Normal to 58 ft wall (Along Ridge)

WALL PRESSURES PER TABLE 27.6-1

L/B: Bldg Dim in Wind Dir / Bldg Dim Normal to mind Bill
h: Height to top of Windward Wall = 32.50 ft
ph: Net Pressure at top of wall (windward + leeward) = 27.73 psf L/B: Bldg Dim in Wind Dir / Bldg Dim Normal to Wind Dir = -16.22 psf ps: Side wall pressure acting away from wall = .30 * ph = -9.17 psf pl: Leeward wall pressure acting away from wall = ph-pl = 18.56 psf -9.17 psf pwh: Windward wall press @ top acting toward wall = ph-pl pw0: Windward wall press @ bot acting toward wall = p0-pl

1.45

= 15.86 psf

ROOF PRESSURES PER TABLE 27.6-2

= 24.750 ft = 0.702 Mean Roof Height Lambda: Exposure Adjustment Factor Slope: Roof Slope = 26.57 Deg

Zone	Load Case1 psf	Load Case2 psf		
1	-14.42	11.33		
2	-18.02	-8.63		
3	-27.66	.00		
4	-24.65	.00		
5	-20.23	.00		

Note: A value of '0' indicates that the zone/load case is not applicable.

ROOF OVERHANG LOADS (FIGURE 27.6-3):

LOAD CASE 1:

Povh1: Overhang pressure for zone 1 = -10.82 psf = -20.75 psf Povh3: Overhang pressure for zone 3

LOAD CASE 2:

Povh1: Overhang pressure for zone 1 = 8.50 psf Povh3: Overhang pressure for zone 3 = .00 psf

Notes - Along Ridge

Wind Pressure on Components and Cladding (Ch 30 Part 1)

All pressures shown are based upon ASD Design, with a Load Factor of .6

Width of Pressure Coefficient Zone "a" = 5.80 ft

Description	Width ft	Span ft	Area Zon	e Max GCp	Min GCp	Max P psf	Min P psf	
CENTER WALL	12.00		1728.0 4		-0.80		-25.91	
EDGE WALL8	12.00	6.00	72.0 5		-1.10	27.19	-33.76	
CENTER ROOF	72.00	15.00	1080.0 1	0.30	-0.80	12.69	-25.91	
ROOF EDGE	6.00	15.00	90.0 2	0.31	-1.22	12.93	-37.08	
ROOF CORNER	6.00	6.00	36.0 3	0.39	-2.27	15.03	-64.66	
Khcc:Comp & Clad	Table 6-	.3 Casa	1			_	0.70	

Khcc:Comp. & Clad. Table 6-3 Case 1 = 0.70Qhcc:.00256*V^2*Khcc*Kht*Kd = 26.43 psf