Klaus S. Lackner
Los Alamos National Laboratory, Columbia University

Hans J. Ziock
Los Alamos National Laboratory

Patrick Grimes
Grimes & Associates

March 2001

Energy needs to be Cheap, Copious and Clean

- Technology can only deliver two out of three
- Need nuclear, renewable and fossil energy option
- Fossil energy technology needs to manage the entire carbon cycle
- Transition to a Net Zero Carbon Economy

Fossil Fuels Contribute 86% of World Energy

Ten billion people trying to consume energy as US citizens do today would raise world energy demand tenfold

US Annual Energy Consumption

CO₂ accumulates in the air

CO₂ accumulates in the air

CO₂ accumulates in the air

electricity or hydrogen

Mobile Sources
Unchanged
Infrastructure

electricity or hydrogen

ZECA Plant

Zero Emission Technology Assuring the Future of Coal and other fossil fuels

- Fossil energy is plentiful and essential
- Coal reserves are virtually unlimited
- Zero emission goal is crucial for the future of coal
- Zero emission technology is feasible

ZECA, the Zero Emission Coal Alliance, plans to demonstrate the technology

Zero Emission Coal Alliance

- ZECA has eighteen members
 - mainly coal producers and coal users in the United States, Canada, Australia and Europe
- ZECA commissioned Nexant
 - to perform a feasibility study and to deliver a technical and business plan
- ZECA plans to pilot the technology in five years
 - Move on to commercialization

ZECA's Long Term Goal: Zero Emission for Sustainable Energy

- Zero Emission
 - No CO₂, SO_x, NO_x, no particulates, no mercury
- Permanent Disposal of CO₂
 - Not a temporary patch that comes back to haunt us
- Match Future Energy Demand
 - Hundreds of years of fossil energy even at increased demand
- Minimal Environmental Impact
 - Avoid legacy issues
- Doubled Efficiency
 - Reduce cost of carbon dioxide disposal
- Economic Implementation
 - No energy penalty, single step eliminates all pollutants

Zero Emission Coal Plant Generating Electricity or Hydrogen

Capture <u>all</u> emission products

Constraints on Disposal Methods

- Safe Disposal
- Minimum Environmental Impact
- No Legacy for Future Generations
- Permanent and Complete Solution
- Economic Viability

Storage 5000 Gt of C

200 years at 4 times current rates of emission

Current Emissions: 6Gt/year

Permanent CO₂ Sequestration Through Accelerated Rock Weathering

- Simple acid-base reaction binds CO₂
- Magnesium silicates provide the base
- Process speeds up natural geologic reactions
- Process is exothermic
- CO₂ is sequestered permanently in inert form

Energy States of Carbon

Net Carbonation Reaction for Serpentine

$$Mg_3Si_2O_5(OH)_4 + 3CO_2(g) \rightarrow 3MgCO_3 + 2SiO_2 + 2H_2O(I)$$

heat/mol $CO_2 = -63.6 \text{ kJ}$

Peridotite and Serpentinite Ore Bodies

Magnesium resources that far exceed world fossil fuel supplies

Mineral Disposal of CO₂

1 GW Electricity

CO2

Coal

3.8 ktons/day

80% Efficiency

10 ktons/day

Earth Moving ~40 ktons/day

25 ktons/day 36% MgO

Open Pit Serpentine Mine **Heat**

Sand & Magnesite

~31 ktons/day

~1.2 ktons/day Fe ~0.2 ktons/day Ni, Cr, Mn

ALBANY'S BREAKTHROUGH

W.K. O'Conner, D.C. Dahlin, D. N. Nilsen, R. P. Walters & P.C. Turner Albany Research Center, Albany OR

$$Mg_3Si_2O_5(OH)_4+3CO_2(g) \rightarrow 3MgCO_3+2SiO_2+2H_2O(I)$$

200,000 years reduced to 1/2 hour

Suggests simple cost-effective implementation

Zero Emission Coal

Outputs of the Process hydrogen in the coal and coal, the major oxidation product of coal released from the calciner with the coal

Excess H₂O from oxidized

CO₂ Acceptor Process

CaO Recycle Loop

CaO Energy Loan

- H₂ carries 150% of the energy stored in carbon
- Downstream conversion efficiency boosted by 150%
- Need to pay back the energy loan from CaO
- May use waste heat for calcination

Economics | Mineral Carbonate Disposal

Disposal Costs for Coal Plant

- Mining cost is well understood, 0.3¢/kWh.
- Earth Moving ~40 ktons/day Carbona
 - Transportation costs are well understood ktons/day
 - shipping coal is 0.1¢/kWh_e
 - Chemical processing cost needs to be proven
 - simple processes are cost effective, \$0.4¢/kWh_e
 - 0.8¢/kW is equivalent to \$20/t of CO₂

Sand & Magnesite

This cost would be covered by P.M. 2.5

ZECA's Path

- Avoid the use of air in the oxidation of carbon
 - carbon dioxide acceptor process
- High efficiency reduces cost of CO₂ disposal
 - electrochemical process using SOFC
- Permanent and safe disposal avoids long term costs of monitoring
 - stable mineral carbonate

Net Zero Carbon Economy

Mobile Sources
Unchanged
Infrastructure

1 m³of Air

40 moles of gas, 1.16 kg wind speed 10 m/s

$$\frac{mv^2}{2} = 60 \text{ J}$$

0.015 moles of CO₂ produced by 10,000 J of gasoline

Extraction from Air

Power Equivalent

from gasoline

v = 3 m/s

30kW/m²

Sunshine 200 W/m²

> Biomass 3 W/m²

Ca(OH)₂ as an absorbent

CO₂ mass transfer is limited by diffusion in air boundary layer

Wind Energy - CO₂ Collection

Wind Energy

- Convection tower,
 Wind Mill etc.
- Extract kinetic energy
- Wind Turbines
- 30% extraction efficiency
- Throughput
 130W/m² @ 6m/s
- Cost \$0.05/kWh

CO₂ Collection

- Convection tower, absorbing "leaves", etc.
- Extract CO₂
- Sorbent Filters
- 30+% extraction efficiency
- Throughput
 0.64g/(s·m²) @ 6m/s
- Cost by analogy \$0.50/ton of CO₂

Cost is in Sorbent Recovery

ENERGY COST

- Recovery of the absorbent (CaO)
 - 179kJ/mole or 0.14 tons of coal per ton of CO₂
 - Assume four times the cost for capital and operation

\$11/ton of CO₂

Disruptive Technology

System can be designed to:

Slow the rate of CO₂ increase

Plateau CO₂ level by CO₂ removal equal to production

Return CO₂ levels to those of earlier times

No change in infrastructure necessary

Carbon Credits

- Oil from the Persian Gulf
 - could be certified as carbon neutral
 - with CO₂ left behind in Oman's Coastal Range
 - Does not require international agreement

Take Back The Empties

