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The ubiquity of depth estimation from observed/derived RMS velocity field cannot be
overstated; it’s everywhere. Anywhere there are time-migrations or beamforming or
travel-time wavefront curvature fitting methods, such as in, seismic, acoustic, or ground-
penetrating radar (GPR), we’ll eventually see maps or cross-sections showing features
(e.g. horizons, boulders, cables, UXOs) in depth. But how was that depth estimate arrived
at? Well, it’s always a home-brewed variant of Dix’s conversion, but seldom, if ever, are
the assumptions conveyed to the final user (e.g. engineer). This note is intended to pop
the bonnet and see what’s going on in there, and maybe in a follow-up note, I’ll explore
the range of depth estimation errors associated with these arbitrary assumptions.

Long story short (see [1] for some background), the kinematics of a reflected wave in a horizontally
layered (parallel bedding) medium are well approximated1 by the celebrated NMO (normal move-out)
equation,

t2(t0, h) = t2
0 + h2

[vrms(t0)]2

where

• h is the distance between a transmitter and a sensor, both located on the same horizontal
plane,

• t0 is the two-way (down and up) travel time to some layer boundary for co-located transmitter
and sensor,

• vrms(t0) is the root-mean-square of the velocities of each traversed layer, where the velocity
in each layer is assumed to be homogenous and isotropic (i.e. constant in all directions and
throughout the entire layer),

• t2(t0, h) is the two-way travel time to t0-determined layer boundary, but as recorded by a sensor
h distance units away from the source.

Riemann integration to the rescue
By sticking to piecewise continuous functions, we can work entirely with Riemann integration, and
there will be no need for Lebesgue to get involved. In the above description the RMS velocity vrms

was defined as,

vrms(t) :=

√√√√1
t

n∑
i=1

v2
i ∆ti where t =

n∑
i=1

∆ti

where ∆ti is the two-way travel time through the i-th layer. Equivalently, we can work with,

v2
rms(t) := 1

t

n∑
i=1

v2
i ∆ti

and if the point or instantaneous velocity, v, of the medium under consideration is expressible as a
piecewise continuous function, then,

v2
rms(t) := 1

t

∫ t

0
v2(τ) dτ t ≥ 0

1The approximation is valid for a small transmitter to sensor distance h.
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Multiplying both sides by t leads to,

t v2
rms(t) =

∫ t

0
v2(τ) dτ

and hence for any 0 ≤ t1 < t2,

t2 v2
rms(t2) − t1 v2

rms(t1) =
∫ t2

t1

v2(τ) dτ

Observations of vrms and arbitrariness of upsampling2 strategies
Now, suppose our experimental design only allows for coarse’ish sampling of vrms, but what we’re
ultimately seeking is the knowledge of average interval velocities for a much finer sampled grid.
looking at the boxed equation above, it’s perfectly clear that once we integrate v2 over some interval,
then we cannot reconstruct the function from the integral value, not without some assumptions either
about vrms or v.

Assuming v is a step (piecewise constant) function

Suppose we sample vrms at t0 and t1 (t0 < t1), but we would like to know the average value of v on
each sub-interval of t0 = t00 < t01 < · · · < t0m

= t1 (upsampling step) and suppose further that on
each sub-interval [t0i

, t0i+1 ] the function v is constant, then on [t0, t1] we can express v as,

v(t) =
m∑

j=1
ajχ[t0j−1 ,t0j

](t) aj > 0 for all 1 ≤ j ≤ m

where χ[t0j−1 ,t0j
] is the characteristic function of the interval [t0j−1 , t0j ] (i.e. 1 on the interval and 0

outside of the interval). Hence,

t1 v2
rms(t1) − t0 v2

rms(t0) =
∫ t1

t0

v2(τ) dτ

=
∫ t1

t0

m∑
j=1

a2
jχ[t0j−1 ,t0j

](τ) dτ

=
m∑

j=1
a2

j (t0j
− t0j−1)

This is it, and this is the punch line; all we need is for the aj ’s to satisfy the above equation. So, if we
only know vrms at t0 and t1 and we don’t make any additional assumptions, then for any partitioning
of an interval [t0, t1], we can construct an infinite collection of functions which will give us the
observed/sampled vrms function, and in this case, we have m − 1 degrees of freedom.

Assuming vrms is piecewise linear - bad idea

Another frequently and erroneously used assumption is that vrms is piecewise linear; that is, vrms

is continuous and made up of linear sections; this cannot happen unless the entire vrms is linear.
2Upsampling in this context implies the assignment of values to v or an average v on some sub-interval.
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The point here is that vrms is everywhere differentiable3, which implies no kinks allowed. For the
skeptics, recall from above,

t v2
rms(t) =

∫ t

0
v2(τ) dτ differentiate both sides

v2
rms(t) + 2t vrms(t)dvrms

dt
(t) = v2(t) by the Fundamental Theorem of Calculus

=⇒ dvrms

dt
(t) = v2(t) − v2

rms(t)
2t vrms(t)

Hence, the derivative is well-defined as vrms(t) > 0 for all t > 0, and therefore vrms cannot have any
kinks.

Spline interpolating vrms

If we fit splines through the observation points such that the splines are differentiable everywhere,
then calculus requirements are satisfied; however, any choice of splines is arbitrary and therefore, the
obtained v(t) is equally arbitrary.

Summary and Consequences
At the upsampling and conversion stage, many software implementations make simplifying assumptions
such as (erroneous) piecewise linearity of vrms or constraints on the distribution of {aj}; however, all
these constraints, which yield some sort of ‘unique’ solution, are in the end completely arbitrary.

Perhaps, the most significant consequence of the above-described arbitrariness is when RMS velocities
are used for depth conversion. One can carry out many case studies to understand the impact of an
underlying assumption about the structure of vrms or v itself and its impact. From the Bayesian
perspective, the depth conversion is always carried out using the prior!

In practice, the client is given values such as depth to horizon or depth to buried infrastructure, and
without understanding the methods, takes these values at face value because the operator/contractor
said so. But the final nail in the coffin is that, too often, the operators themselves don’t understand
the software they’re using and the built-in assumptions.
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3vrms is differentiable by the Fundamental Theorem of Calculus.
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