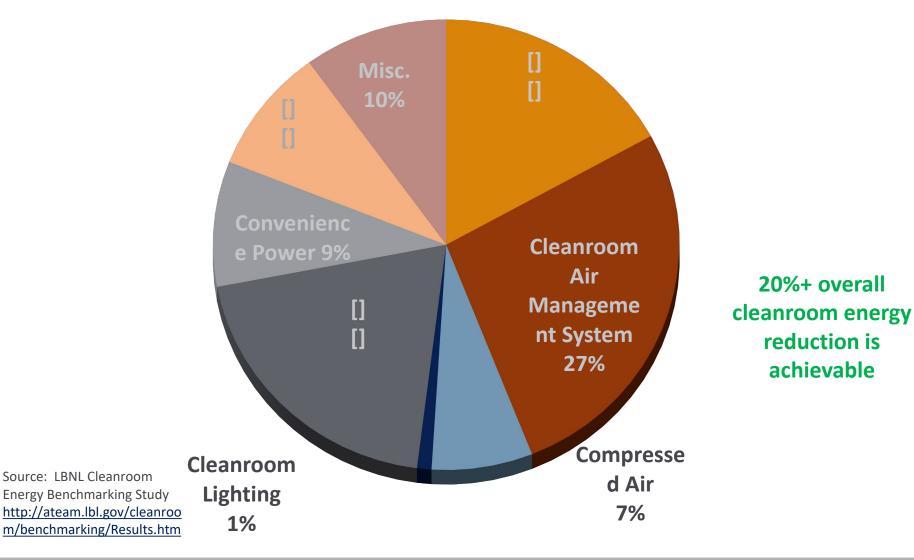
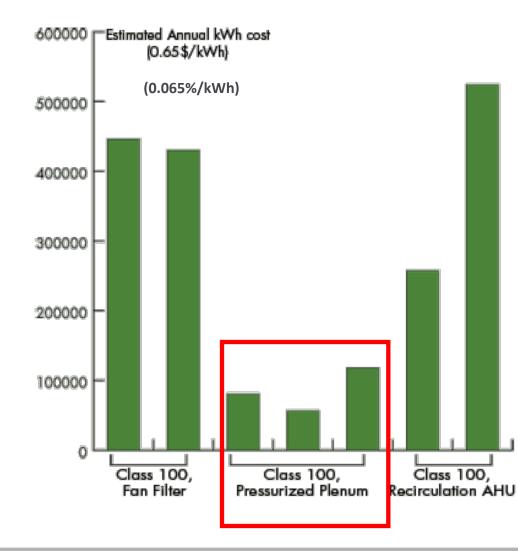
Energy Efficient Cleanroom Air Recirculation Systems

Greg Owen, PE Principal **GLO** Consulting June 25, 2018

Enegry Efficient Design Goals


8

- Provide a functional clean environment that is transparent to the activities carried out on the space
- Provide an environment that is conducive to research
- Optimize capital and construction costs
- Design an application specific system
- Resist "canned" designed systems


Cleanroom Energy Use

Pennsylvania

Estimated annual kWh cost for a 1,000,000 cfm, class 100 re-circulation system based upon actual measured efficiencies.

Source: LBNL Environmental Energy Technology Division, http://eetd.lbl.gov/newsletter/nl09/eetd-nl09-4cleanroom.html

Table 1. Performance Metrics of Cleanroom Air Systems and Process Load

Metrics	Definition	Unit
Re-circulation Air Handler Unit Efficiency	Recirculated airflow rate per kW of electricity used by all re- circulation air fans	Cfm/kW
Power Intensity for Re-circulation Air Handler Unit	Total fan power of re-circulation air handler unit per unit of primary cleanroom floor area	W/ft ²
Re-circulation Air Change Rate	Re-circulation airflow rate divided by primary cleanroom volume	1/hr
Average Cleanroom Air Velocity	Re-circulation airflow rate divided by primary cleanroom floor area	fpm
Make-up Air Handler Unit Efficiency	Make-up airflow rate per kW of electricity used by make-up air fans	Cfm/kW
Process Load Intensity	Process load per unit of primary cleanroom floor area	W/ft^2

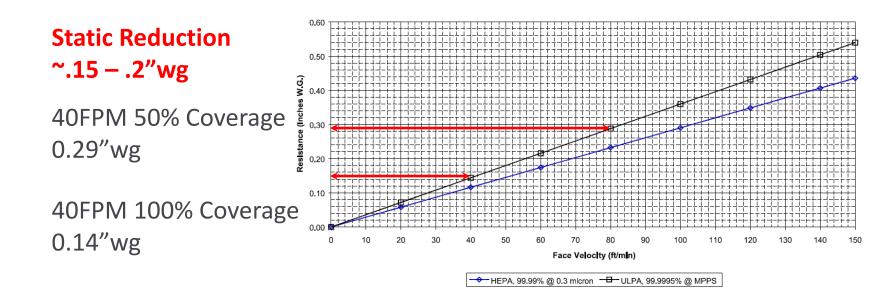
Source: Energy Performance of Cleanroom Environmental Systems ,Tengfang Xu, and William Tschudi Ernest Orlando Lawrence Berkeley National Laboratory November 2001

$KW = \frac{(CFM * SP * 0.00011712)}{FAN \acute{\eta} * MOTOR \acute{\eta} * DRIV}$

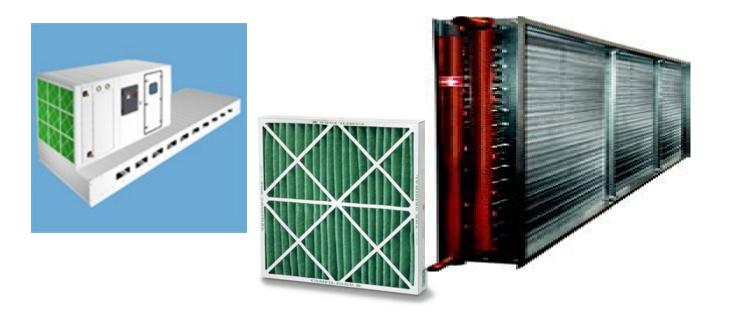
CFM = *Cubic Feet per Minute of Air*

SP = Fan Static Pressure Differential

 $\dot{\eta} = Component Efficiency$


Design Decisions Impact these Elements!

- Use Actual Filter Resistance Curve Data
- Dirty Filter Load = 2X Clean Filter Resistance



2018

Static Pressure

- Decrease AHU component face velocity
- Minimize / eliminate sound attenuators
- Use appropriate room air flow for required cleanliness class and function

Efficiency $\dot{\eta}$

- Optimize recirculation unit capacity
- Consider combined motor / wheel efficiency
- RPM matters
- Sound power impacts efficiency and BHp.

Validate Selection at:

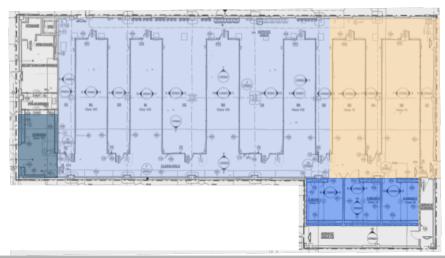
- Selection Point 125% of loaded filter static
 - Confirm acceptable operation at
 - N+1 operating point with clean and dirty filters
 - N operating point with clean and dirty filters
- Use IE-4 super premium efficiency motors
- Estimate CFM / Kw metric at normal and N+1 operating point

Operating Cleanroom Example

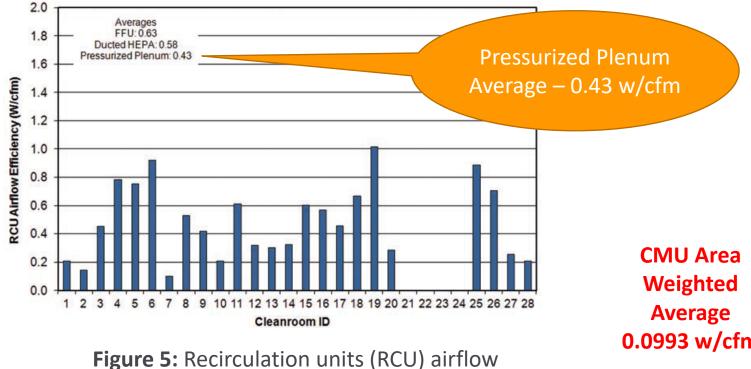
Carnegie Mellon University - Scott Hall

Claire and John Bertucci Nanotechnology Laboratory

- 8500GSF slab on grade cleanroom suite
- Class 10 (ISO CI 4)
- Class 100 (ISO CI 5)
- Class 1000 (ISO CI 6)

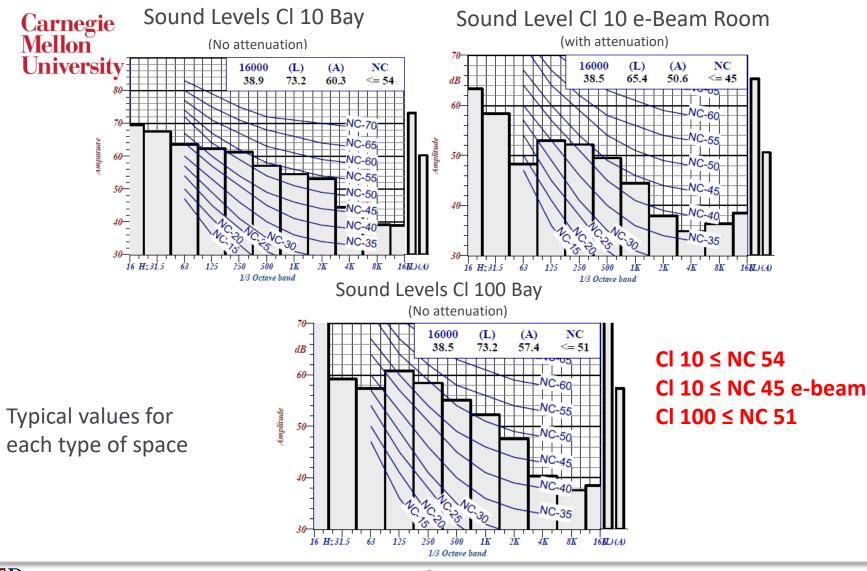


Carnegie Mellon University


- Cl 10 100% filter coverage @ 40FPM
- Cl 10 e-Beam 100% filter coverage @ 30FPM ·
- Cl 100 100% filter coverage @ 30FPM ·
- Cl 1000 80% filter coverage @ 17.5FPM -

Recirculation System Efficiencies

efficiency in the LBNL database.


Source: *Cleanroom Energy Efficiency*, ASHRAE Journal, October 2010, Paul A. Mathew, Ph.D., Member ASHRAE; William Tschudi, P.E., Member ASHRAE; Dale Sartor, P.E.; James Beasley

Weighted Average 0.0993 w/cfm 77% reduction from 2010 average energy use

Operating Cleanroom Example

2018 UGIM Symposium

Operating Cleanroom Example

Carnegie Mellon University

Particle Counts

AREA	ISO CLASS	PARTICLE SIZE	AVERAGE PARTICLE/FT3	TOTAL LOC	PASS/ FAIL
Gowning 4S104	6	0.5	0	9	Pass
Clean Aisle	5	0.5	0	19	Pass
Bay 1	5	0.5	0	13	Pass
Bay 2	5	0.5	0	13	Pass
Bay 3	5	0.5	0	13	Pass
Bay 4	5	0.5	0	13	Pass
Bay 5	4	0.5	0	13	Pass
Bay 6	4	0.5	0	14	Pass
E-BEAM 1	4	0.5	0	9	Pass
E-BEAM 2	4	0.5	0	9	Pass
E-BEAM 3	4	0.5	0	9	Pass

Space activity during particle counts- Tool Installation

General Design Guidance

- Engineer the design of the system
- Use real numbers
- Avoid rules of thumb
- Focus on metrics
- Consider first cost vs ROI

Carnegie Mellon University

Special Thanks Matt Moneck Max Dorosa

Questions

Greg Owen, PE GLO Consulting, LLC 503 819 5303

> GLO Consulting

