FLOOD MITIGATION TASK FORCE

Gravel Extraction Modeling Results and Initial Survey Results

07/15/2020

GRAVEL EXTRACTION MODELING RESULTS

LOWE RIVER GRAVEL EXTRACTION

- What is the gravel extraction?
 - Removal of gravel from the floodplain to draw a portion of the flow away from the effected area
- What was proposed?
 - 3500 ft channel
 - Estimated volume of material removed: 100,000 CY
 - If placed on Valdez High School football field, the pile of gravel would be approx. 38 ft high
- What was modeled?
 - ^D The existing flow conditions in the Lowe River and two concept channels in different locations
- What will I present today?
 - Changes in water surface elevation i.e. How the concepts increase or decrease water level within the floodplain

CHANNEL CONCEPT DESIGN

- Concept Design 1
 - Optimal plan for reducing the water surface elevation at the dikes
 - Designed to pull flow away from the (river) right side of the floodplain
 - Design based on regime analysis using the 2019 topographical survey data
- Concept Design 2
 - Based on FMT comments
 - The original concept was a straight, deep channel in the center of the floodplain
 - NHC didn't model a straight channel as it would not be stable
 - A stable channel was modeled in the center of the floodplain, making it a more realistic comparison to Concept Design 1

CONCEPT DESIGN 1: LOCATION

CONCEPT DESIGN 2: LOCATION

CONCEPT DESIGN 1: DAILY FLOW (Q₂)

CONCEPT DESIGN 2: DAILY FLOW (Q₂)

COMPARISON OF CHANNELS FOR DAILY FLOW (Q2)

Comparison of Flow Transfer for Q₂

Location	Concept Design 1	Concept Design 2
Upstream of Groin 1	40%	0%
Between Groin 1 & Groin 2	24%	17%

Note:

- Approximate reduction in water surface elevation at the dikes is 0.5ft to 1ft for Design Concept 1
- Concept Design 2 does not have the same ability to reduce water surface elevation at Groin 2 and Groin 4
- Concept 1 directs more of the flow towards the left side of the floodplain

CONCEPT DESIGN 1: 10% EXCEEDANCE STORM (Q₁₀)

CONCEPT DESIGN 2: 10% EXCEEDANCE STORM (Q₁₀)

COMPARISON OF CHANNELS FOR Q₁₀

Comparison of Flow Transfer for Q_{10}

Location	Concept Design 1	Concept Design 2
Upstream of Groin 1	28%	0%
Between Groin 1 & Groin 2	16%	14%

Note:

- Approximate reduction in water surface elevation at the dikes for Concept Design 1 is:
 - 0.5ft to 1ft for Groin 1
 - 0.2ft to 0.5ft for Groin 2
- Concept Design 2 reduces the water surface more in the center of the floodplain that at the dikes
- Concept Design 1 reduces the water surface elevation over a greater area, downstream of Groin 4

CONCEPT DESIGN 1: 1% EXCEEDANCE STORM (Q₁₀₀)

CONCEPT DESIGN 2: 1% EXCEEDANCE STORM (Q₁₀₀)

COMPARISON OF CHANNELS FOR Q₁₀₀

Comparison of Flow Transfer for Q_{100}

Location	Concept Design 1	Concept Design 2
Upstream of Groin 1	20%	0%
Between Groin 1 & Groin 2	11%	11%

Note:

- Approximate reduction in water surface elevation at the dikes for both Groin 1 and Groin 2:
 - 0.5ft to 1ft for Groin 1
 - 0.2ft to 0.5ft for Groin 2

INITIAL SURVEY RESULTS

NEAR WHICH WATERBODY DO YOU MOST CLOSELY LIVE?

Answered: 52 Skipped: 0

DO YOU THINK FLOODING IS A PROBLEM IN VALDEZ?

78% SAID YES.

WHERE IS FLOODING A PROBLEM IN VALDEZ? CHECK ALL THAT APPLY.

Answered: 50 Skipped: 2

DO YOU FEEL FLOOD MITIGATION EFFORTS FOR THE WATERBODY YOU REFERENCED ABOVE ARE SUFFICIENT? PLEASE ASSIGN THE GRADE YOU FEEL REFLECTS THE CITY'S EFFORTS AND EFFECTIVENESS IN MITIGATING FLOODING.

Answered: 49 Skipped: 3

WHAT WOULD BE APPROPRIATE MEASURES OF SUCCESSFUL FLOOD MITIGATION EFFORTS? PLEASE CHECK ALL THAT APPLY.

Primary Takeaways from the Survey:

- Flooding is perceived as a problem that needs additional correction, particularly within the 10-mile area
- One of the most important considerations in flood mitigation is in efficient management of public funds to get the full usable life out of infrastructure
- The feasibility study coming later this summer will not be impacted by these results; the survey lends support to the current mitigation plan